Tìm 1 số có 2 chữ số, biết rằng nếu đổi chỗ 2 chữ số ấy thì được số mới lớn hơn số ban đầu là 63 đơn vị, tổng của số ban đầu và số mới là 99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là \(\overline{ab}\left(0< a< 9,0\le b< 9;a,b\in N\right)\)
Theo đề,ta có: \(\left\{{}\begin{matrix}2a+3b=24\\\overline{ba}-\overline{ab}=27\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a+3b=24\\9b-9a=27\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a+3b=24\\b-a=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a+3b=24\left(1\right)\\2b-2a=6\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)+\left(2\right)\Leftrightarrow5b=30\Rightarrow b=6\Rightarrow a=6-3=3\Rightarrow\overline{ab}=36\)
1/
Số cần tìm \(\overline{ab7}\) theo đề bài
\(\overline{7ab}=2.\overline{ab7}+21\)
\(\Rightarrow700+\overline{ab}=20.\overline{ab}+14+21\)
\(\Leftrightarrow19.\overline{ab}=665\Rightarrow\overline{ab}=665:19=35\)
Số cần tìm là 357
2/
Gọi số cần tìm là \(\overline{ab}\) theo đề bài
\(\overline{ba}-\overline{ab}=63\)
\(10.b+a-10.a-b=63\)
\(9.\left(b-a\right)=63\Rightarrow b-a=7\)
\(a=\left(9-7\right):2=1\)
\(\Rightarrow b=9-a=9-1=8\)
Số cần tìm là 18
Gọi số tự nhiên đó là ab(ab>14). Theo đề bài ta có:
Chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 đơn vị nên ta có phương trình: \(-a+b=4\left(1\right)\)
Nếu đổi chỗ 2 chữ số cho nhau thì được số mới bằng \(\dfrac{17}{5}\) số cũ nên ta có phương trình: \(ba-ab=\dfrac{17}{5}\Leftrightarrow10b+a-10a-b=\dfrac{17}{5}\Leftrightarrow9b-9a=\dfrac{17}{5}\Leftrightarrow-45a+45b=17\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=4\\-45a+45b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-45a+45b=180\left(3\right)\\-45a+45b=17\left(2\right)\end{matrix}\right.\) Trừ từng vế của (3) cho (2) ta được:
\(\Rightarrow0a+0b=180-17=163\) Vô lí \(\Rightarrow\) Ko có a,b
Vậy ko tồn tại số tự nhiên thỏa mãn đề bài
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có: a+b=11 và 10b+a-10a-b=27
=>a+b=11 và -9a+9b=27
=>a+b=11 và a-b=-3
=>a=4 và b=7
Gọi số tự nhiên cần tìm là ab(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a< 10\\0< b< 10\end{matrix}\right.\))
Vì số đó gấp 9 lần tổng các chữ số của nó nên ta có phương trình:
\(10a+b=9\left(a+b\right)\)
\(\Leftrightarrow10a+b=9a+9b\)
\(\Leftrightarrow10a+b-9a-9b=0\)
\(\Leftrightarrow a-8b=0\)(1)
Vì khi đổi chỗ hai chữ số thì ta được số mới kém số ban đầu 63 đơn vị nên ta có phương trình:
\(10b+a+63=10a+b\)
\(\Leftrightarrow10b+a+63-10a-b=0\)
\(\Leftrightarrow-9a+9b=-63\)
\(\Leftrightarrow-9\left(a-b\right)=-9\cdot7\)
\(\Leftrightarrow a-b=7\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-8b=0\\a-b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7b=-7\\a=7+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=7+1=8\end{matrix}\right.\)
Vậy: Số ban đầu là 81
Gọi số cần tìm là \(\overline{ab}\)
Theo bài ta có :
\(\overline{ab}=9\left(a+b\right)\)
\(\Leftrightarrow10a+b=9a+9b\)
\(\Leftrightarrow a=8b\)
\(\Leftrightarrow a-8b=0\) \(\left(1\right)\)
Lại có : Khi đổi chỗ 2 chữ số thì đc số mới kém số ban đầu 2 đơn vị
\(\Leftrightarrow\overline{ab}-\overline{ba}=63\)
\(\Leftrightarrow10a+b-10b-a=63\)
\(\Leftrightarrow9a-9b=0\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\)
Vậy.....
Số cần tìm có hai chữ số có dạng 10a+b và a+b=18.
Vì đổi chỗ 2 chữ số đó được số mới nhỏ hơn số cũ 18 đơn vị nên ta có:10a+b-(10b+a)=18
Hay: 9a-9b=18
Nên a-b=2 mà a+b=16 nên suy ra: a=9 và b=7
Vậy số cần tìm là 97.
số mới là
(99+63):2=81
số cũ là
81-63=18