giúp em với ạ:tính
A=1/2+1/2^2+1/2^3+...+1/2^100
B=1+1/3+1/3^3+...+1/3^2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)
\(=\dfrac{3}{\dfrac{2\left(2+1\right)}{2}}+\dfrac{3}{\dfrac{3\left(3+1\right)}{2}}+...+\dfrac{3}{\dfrac{2022\left(2022+1\right)}{2}}\)
\(=\dfrac{6}{2\left(2+1\right)}+\dfrac{6}{3\left(3+1\right)}+...+\dfrac{6}{2022\cdot2023}\)
\(=\dfrac{6}{2\cdot3}+\dfrac{6}{3\cdot4}+...+\dfrac{6}{2022\cdot2023}\)
\(=6\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2022\cdot2023}\right)\)
\(=6\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=6\cdot\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)=6\cdot\dfrac{2021}{4046}=\dfrac{12126}{4046}< 3\)
mà \(3< \dfrac{10}{3}\)
nên \(M< \dfrac{10}{3}\)
\(\dfrac{3}{5}+\dfrac{4}{7}+\dfrac{2}{5}+\dfrac{1}{7}+\dfrac{2}{7}\\ =\left(\dfrac{3}{5}+\dfrac{2}{5}\right)+\left(\dfrac{4}{7}+\dfrac{1}{7}+\dfrac{2}{7}\right)\\ =\dfrac{5}{5}+\dfrac{7}{7}\\ =1+1\\ =2\)
3/5 + 4/7 + 2/5 + 1/7 + 2/7
=(3/5 + 2/5) + (4/7 + 1/7 + 2/7)
= 1 + 1 = 2
3/5 và 2/5 có mẫu chung là 5, 2+3 = 5 => 5/5 = 1
4/7, 1/7 và 2/7 có mẫu chung là 7, 4+1+2 = 7 => 7/7 = 1
-Ta có công thức với n∈N* thì:\(1+2+...+n=\dfrac{\left(\dfrac{n-1}{1}+1\right)\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)}{2}\)
\(B=1+\dfrac{1}{2}.\left(1+2\right)+\dfrac{1}{3}.\left(1+2+3\right)+...+\dfrac{1}{2022}.\left(1+2+3+...+2022\right)\)
\(=1+\dfrac{1}{2}.\dfrac{2.3}{2}+\dfrac{1}{3}.\dfrac{3.4}{2}+...+\dfrac{1}{2022}.\dfrac{2022.2023}{2}\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2023}{2}\)
\(=\dfrac{2+3+4+...+2023}{2}=\dfrac{1+2+3+4+...+2022}{2}=\dfrac{\dfrac{2022.2023}{2}}{2}=10222626,5\)
Lời giải:
Đặt $2021=a$ thì:
$A=a^2+(a+1)^2+(a+2)^2+(a+3)^2$
$=4a^2+12a+14=(2a+3)^2+5=4045^2+5$ chia hết cho $25$ nhưng không chia hết cho $5$
Do đó $A$ không là số chính phương
-----------------------
$9\equiv 1\pmod 4\Rightarrow 9^{100}\equiv 1\pmod 4$
$94^{100}\equiv 0\pmod 4$
$1994^{100}\equiv 0\pmod 4$
$\Rightarrow B\equiv 1+1+0+1\equiv 2\pmod 4$
Một scp không thể chia 4 dư 2 nên $B$ không là scp
---------------
Công thức $1^3+2^3+...+n^3=[\frac{n(n+1)}{2}]^2$ là scp nên $C$ là scp.
\(1+2+...+n=\dfrac{\left(\dfrac{n-1}{1}+1\right).\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)}{2}\)
\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)
\(=3\left(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+...+2022}\right)\)
\(=3\left(\dfrac{1}{\dfrac{2.\left(2+1\right)}{2}}+\dfrac{1}{\dfrac{3.\left(3+1\right)}{2}}+...+\dfrac{1}{\dfrac{2022.\left(2022+1\right)}{2}}\right)\)
\(=3\left(\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{2022.2023}\right)\)
\(=3.2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)\)
\(=6.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=6.\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)\)
\(=6.\dfrac{2021}{4046}=3.\dfrac{2021}{2023}=\dfrac{6063}{2023}=\dfrac{18189}{6069}\)
\(\dfrac{10}{3}=\dfrac{20230}{6069}>\dfrac{18189}{6069}=M\)
Bài 1:
a) \(\dfrac{65}{91}+\dfrac{-33}{55}=\dfrac{5}{7}+\dfrac{-3}{5}=\dfrac{25}{35}+\dfrac{-21}{35}=\dfrac{4}{35}\)
b) \(\dfrac{36}{-84}+\dfrac{100}{450}=\dfrac{-3}{7}+\dfrac{2}{9}=\dfrac{-27}{63}+\dfrac{14}{63}=\dfrac{-13}{63}\)
A = 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^100
2A = 1 + 1/2 + 1/2^2 + ... + 1/2^99
2A - A = (1 + 1/2 + 1/2^2 + ... + 1/2^99) - (1/2 + 1/2^2 + 1/2^3 + ... + 1/2^100)
A = 1 - 1/2^100
B = 1 + 1/3 + 1/3^3 + ... + 1/3^2022
3B = 3 + 1 + 1/3 + ... + 1/3^2021
3B - B = (3 + 1 + 1/3 + ... + 1/3^2021) - (1 + 1/3 + 1/3^3 + ... + 1/3^2022)
2B = 3 - 1/3^2022
B = \(\dfrac{\text{3 - 1/3^2022}}{\text{2}}\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) +...............+ \(\dfrac{1}{2^{100}}\)
2.A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) +\(\dfrac{1}{2^3}\).........+\(\dfrac{1}{2^{99}}\)
2A -A = 1 - \(\dfrac{1}{2^{100}}\)
A = 1 - \(\dfrac{1}{2^{100}}\)
B = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^3}\) + ....+ \(\dfrac{1}{3^{2022}}\)
Xem lại đề bài