K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn ơi có mik hỏi là Chứng minh ΔDEF = Δ EHF đúng không bạn? 

28 tháng 3 2016

http://d3.violet.vn/uploads/previews/291/844162/preview.swf

a) đương nhiên ( áp dụng hệ thức lượng trong tam giác vuông )

b) \(\text{EF}=\sqrt{DE^2+DF^2}=\sqrt{12^2+16^2}=20\) (cm )

ta có DE^2 = EH . EF => EH = DE^2/ EF = 12^2 / 20 = 7.2 ( cm )

DH = DE.DF / EF = 9,6 ( cm ) 

a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xet ΔEDF có EK là phân giác

nên DK/DE=FK/FE

=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1

=>DK=3cm; FK=5cm

b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có

góc DEK=góc HEI

=>ΔDEK đồng dạng với ΔHEI

=>ED/EH=EK/EI

=>ED*EI=EK*EH

c: góc DKI=90 độ-góc KED

góc DIK=góc HIE=90 độ-góc KEF

mà góc KED=góc KEF
nên góc DKI=góc DIK

=>ΔDKI cân tại D

mà DG là trung tuyến

nên DG vuông góc IK

18 tháng 3 2023

bạn ơi, góc DKI vuông góc từ đâu vậy?

 

a: Xét ΔDEF vuông tại D có DH là đường cao

nên DH^2=EH*FH

=>DH=4,8cm

Xét ΔDEF vuông tại D có DH là đường cao

nên ED^2=EH*EF và FD^2=FH*FE

=>ED^2=36 và FD=64

=>ED=6cm; FD=8cm

b: DK=DF/2=4cm

Xét ΔDKE vuông tại D có tan DEK=DK/DE=4/6=2/3

nên \(\widehat{DEK}\simeq34^0\)

c: ΔDEF vuông tại D có DH là đường cao

nên EH*EF=ED^2

ΔDKE vuông tại D có DM là đường cao

nên EM*EK=ED^2

=>EH*EF=EM*EK

=>EH/EK=EM/EF

Xét ΔEHM và ΔEKF có

EH/EK=EM/EF

góc HEM chung

Do đó: ΔEHM đồng dạng với ΔEKF

=>góc EHM=góc EKF

=>góc FHM+góc FKM=180 độ

=>FKMH nội tiếp

=>góc MKH=góc MFH

a: Xét ΔEHD và ΔEHF có

EH chung

\(\widehat{DEH}=\widehat{FEH}\)

ED=EF

Do đó: ΔEHD=ΔEHF

b: Xét ΔEPH vuông tại P và ΔEMH vuông tại M có

EH chung

\(\widehat{PEH}=\widehat{MEH}\)

Do đó: ΔEPH=ΔEMH

=>HP=HM

c: ΔDEF cân tại E

mà EH là đường phân giác

nên EH\(\perp\)DF và H là trung điểm của DF

H là trung điểm của DF

=>DH=HF=DF/2=6/2=3(cm)

ΔEHD vuông tại H

=>\(EH^2+HD^2=ED^2\)

=>\(EH^2+3^2=5^2\)

=>\(EH^2=5^2-3^2=25-9=16\)

=>\(EH=\sqrt{16}=4\left(cm\right)\)

a: Xét ΔEHD và ΔEHF có

EH chung

\(\widehat{HED}=\widehat{HEF}\)

ED=EF

Do đó: ΔEHD=ΔEHF

c: Ta có; ΔEHD=ΔEHF

=>HF=HD

mà H nằm giữa D và F

nên H là trung điểm của DF

=>\(HD=\dfrac{DF}{2}=3\left(cm\right)\)

ΔEHD vuông tại H

=>\(EH^2+HD^2=ED^2\)

=>\(EH^2=5^2-3^2=16\)

=>\(EH=\sqrt{16}=4\left(cm\right)\)

loading...

21 tháng 9 2023

a) Xét tam giác DEF vuông tại D có đường cao DI ta có:
\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)

\(\Rightarrow DI^2=\dfrac{DE^2DF^2}{DE^2+DF^2}\)

\(\Rightarrow DI^2=\dfrac{15^2\cdot20^2}{15^2+20^2}=144\)

\(\Rightarrow DI=12\left(cm\right)\) 

b) Xét tam giác DEF vuông tại D có đường cao DI áp dụng Py-ta-go ta có:

\(DF^2=EF^2-DE^2\)

\(\Rightarrow DF^2=15^2-12^2=81\)

\(\Rightarrow DF=9\left(cm\right)\)

Ta có: \(DI=\sqrt{\dfrac{DF^2DE^2}{DF^2+DE^2}}\)

\(\Rightarrow DI=\sqrt{\dfrac{9^2\cdot12^2}{9^2+12^2}}=\dfrac{108}{15}\left(cm\right)\)