giải bài toán này bằng cách lập phương trình hộ mk vs ạ :
.Một ô tô dự định đi từ A đến B với vận tốc là 50km/h nhưng khi đi được 2/3 quãng đường thì ô tô tăng vận tốc thêm 10km và ô tô đó đến B sớm hơn dự định là 24 phút . Tính quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian dự định đi hết quãng đường là x.
Độ dài quãng đường AB là: S = v.t = 40x
Nửa quãng đường là S/2 = 40x/2 = 20x.
Nửa quãng đường đầu đi vs vtốc dự định (40km/h)
=> Thời gian đi hết nửa quãng đường đầu là: t1 = S : v1 = 20x : 40 = 1/2x
Nửa quãng đường đầu đi vs vtốc tăng hơn dự định 10km/h (50km/h)
=> Thời gian đi hết nửa quãng đường sau là t2 = S : v2 = 20x : 50 = 2/5x
Tổng thời gian đi hết quãng đường là: t = t1 + t2 = 1/2x + 2/5x = 9/10x
Do thực tế đến B sớm hơn dự kiến 1h nên ta có: x - 9/10x = 1 => x = 10 (h)
=> Độ dài quãng đường AB là S = 40.10 = 400 (km).
Gọi độ dài quãng đường AB là x
Thời gian dự định là x/50
Trong 2h, xe đi được 50*2=100km
Theo đề, ta có phương trình:
\(\dfrac{x}{50}=\dfrac{7}{3}+\dfrac{x-100}{60}\)
=>x/50-x/60+5/3=7/3
=>x/300=2/3
=>x=200
Gọi vận tốc ban đầu của ô tô là x(km/h)
Thời gian dự kiến ban đầu sẽ đi hết quãng đường là \(\dfrac{840}{x}\left(giờ\right)\)
Thời gian đi nửa quãng đường đầu tiên là \(\dfrac{840}{2x}=\dfrac{420}{x}\left(giờ\right)\)
Vận tốc lúc sau là x+2(km/h)
Thời gian đi hết quãng đường còn lại là \(\dfrac{420}{x+2}\left(giờ\right)\)
30p=0,5h=1/2h
Theo đề, ta có phương trình:
\(\dfrac{420}{x}+\dfrac{420}{x+2}+\dfrac{1}{2}=\dfrac{840}{x}\)
=>\(-\dfrac{420}{x}+\dfrac{420}{x+2}=\dfrac{-1}{2}\)
=>\(\dfrac{-420x-840+420x}{x\left(x+2\right)}=\dfrac{-1}{2}\)
=>\(x\left(x+2\right)=1680\)
=>\(x^2+2x-1680=0\)
=>(x-40)(x+42)=0
=>\(\left[{}\begin{matrix}x-40=0\\x+42=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=40\left(nhận\right)\\x=-42\left(loại\right)\end{matrix}\right.\)
vậy: vận tốc dự định là 40km/h
Gọi độ dài quãng đường AB là x(km)
(Điều kiện: x>0)
Thời gian dự định đi hết quãng đường AB là \(\dfrac{x}{50}\left(giờ\right)\)
Trong 2h ô tô đi được \(2\cdot50=100\left(km\right)\)
Độ dài quãng đường còn lại là x-100(km)
Thời gian thực tế ô tô đi hết quãng đường AB là:
\(2+\dfrac{1}{3}+\dfrac{x-100}{50+10}=\dfrac{7}{3}+\dfrac{x-100}{60}\left(giờ\right)\)
Theo đề, ta có phương trình:
\(\dfrac{7}{3}+\dfrac{x-100}{60}=\dfrac{x}{50}\)
=>\(\dfrac{7}{3}+\dfrac{x}{60}-\dfrac{5}{3}=\dfrac{x}{50}\)
=>\(\dfrac{x}{60}-\dfrac{x}{50}=-\dfrac{2}{3}\)
=>\(\dfrac{-x}{300}=\dfrac{-2}{3}\)
=>x=200(nhận)
Vậy: Độ dài quãng đường AB là 200km
Gọi quãng đường AB là \(x\left(km\right)\)
Thời gian dự kiến đi hết quãng đường AB là \(x:40\)
Thời gian thực tế xe đi với vận tốc 40 là : \(\frac{0,5x-60}{40}\)
Thời gian xe đi nốt quãng đường AB với vận tốc 50 là :\(\frac{0,5x+60}{50}\)
Xe đến sớm hơn dự kiến 1 giờ nên có :
\(1+\frac{0,5x-60}{40}+\frac{0,5x+60}{50}=\frac{x}{40}\)
\(\Leftrightarrow40.50+50\left(0,5x-60\right)+40\left(0,5x+60\right)=50x\)
\(2000+45x-3000+2400=50x\Leftrightarrow5x=1400\Leftrightarrow x=280\left(km\right)\)