Tìm cặp số nguyên x,y biết
a, x/y = 2/5
b, x/3=y/7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\left(x-1\right)\left(y+2\right)=7\)
\(\Rightarrow\left(x-1\right)\) và \(\left(y+2\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
x-1 | -7 | -1 | 1 | 7 |
y+2 | -1 | -7 | 7 | 1 |
x | -6 | 0 | 2 | 8 |
y | -3 | -9 | 5 | -1 |
Vậy \(\left(x;y\right)=\left\{\left(-6;-3\right);\left(0;-9\right);\left(2;5\right);\left(8;-1\right)\right\}\)
b) \(\left(x-2\right)\left(3y+1\right)=17\)
\(\Rightarrow\left(x-2\right)\) và \(\left(3y+1\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Ta có bảng giá trị:
x-2 | -17 | -1 | 1 | 17 |
3y+1 | -1 | -17 | 17 | 1 |
x | -15 | 1 | 3 | 19 |
y | \(\dfrac{-2}{3}\) (loại) | -6 (t/m) | \(\dfrac{16}{3}\) (loại) | 0 (t/m) |
Vậy \(\left(x;y\right)=\left\{\left(1;-6\right);\left(19;0\right)\right\}\)
Ko ghi lại đề nhé
a) \(TH1\left[{}\begin{matrix}x-1=1\\y+2=7\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
\(TH2:\left[{}\begin{matrix}x-1=-1\\y+2=-7\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\y=-9\end{matrix}\right.\)
\(TH3:\left[{}\begin{matrix}x-1=7\\y+2=1\end{matrix}\right.=>\left[{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)
\(TH4:\left[{}\begin{matrix}x-1=-7\\y+2=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)
b) \(TH1:\left[{}\begin{matrix}x-2=1\\3y+1=17\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\y=\dfrac{16}{3}\end{matrix}\right.=>Loại\)
\(TH2:\left[{}\begin{matrix}x-2=-1\\3y+1=-17\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\y=-6\end{matrix}\right.Chọn\)
\(TH3:\left[{}\begin{matrix}x-2=17\\3y+1=1\end{matrix}\right.=>\left[{}\begin{matrix}x=19\\y=0\end{matrix}\right.=>Chọn\)
\(TH4:\left[{}\begin{matrix}x-2=-17\\3y+1=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-15\\y=\dfrac{-2}{3}\end{matrix}\right.=>Loại\)
Bạn tự kết luận hộ mk nha
a.
$xy=-21=7.(-3)=(-7).3=3.(-7)=(-3).7=21.(-1)=(-21).1=(-1).21=1(-21)$
Do đó $(x,y)=(7,-3); (-7,3); (3,-7); (-3,7); (21,-1); (-21,1); (-1,21); (1,-21)$
b.
$(x+5)(y-3)=14=1.14=14.1=(-14)(-1)=(-1)(-14)=2.7=7.2=(-2)(-7)=(-7)(-2)$
Do đó:
$(x+5,y-3)=(1,14); (14,1); (-14,-1); (-1,-14); (2,7); (7,2); (-2,-7); (-7,-2)$
Đến đây thì đơn giản rồi.
c.
$x(y-2)=-19$, bạn làm tương tự
d. Tương tự
a, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=10\end{matrix}\right.\\ b,x:2=y:\left(-5\right)\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)
\(\dfrac{x}{3}=\dfrac{y}{7}\Rightarrow\dfrac{x}{y}=\dfrac{3}{7}\)
\(\dfrac{x}{y}-1=\dfrac{-5}{19}\Rightarrow\dfrac{x}{y}=\dfrac{14}{19}\)
Vô lí => không có x,y thỏa mãn
a) Ta có: \(\dfrac{x}{3}=\dfrac{y}{7}\)
nên \(\dfrac{x}{y}=\dfrac{3}{7}\)
b) Ta có: \(\dfrac{x}{y-1}=\dfrac{5}{-19}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y-1}{-19}\)
hay \(\dfrac{x}{5}=\dfrac{1-y}{19}\)
a) Ta có: (x+1)(y-2)=-2
nên x+1; y-2 là các ước của -2
Trường hợp 1:
\(\left\{{}\begin{matrix}x+1=-1\\y-2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x+1=2\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x+1=-2\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x+1=1\\y-2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy: (x,y)\(\in\){(-2;4);(1;1);(-3;3);(0;0)}
b) Ta có: (x+1)(xy-1)=3
nên x+1;xy-1 là các ước của 3
Trường hợp 1:
\(\left\{{}\begin{matrix}x+1=1\\xy-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\-1=3\end{matrix}\right.\Leftrightarrow loại\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x+1=3\\xy-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x+1=-1\\xy-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x+1=-3\\xy-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-\dfrac{1}{2}\end{matrix}\right.\left(loại\right)\)
Vậy: \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;1\right)\right\}\)
c) Ta có: \(\left(x+y\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vây: (x,y)=(-1;1)
d) Ta có: \(\left|x+y\right|\cdot\left(x-y\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+y\right|=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy: (x,y)=(0;0)
\(a,\text{Vì }x,y\in N\Leftrightarrow x+2\ge2;y+3\ge3\\ \Leftrightarrow\left(x+2\right)\left(y+3\right)=6=2\cdot3=3\cdot2\\ \Leftrightarrow\left\{{}\begin{matrix}x+2=2\\y+3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(0;0\right)\)
\(b,\Leftrightarrow\left(x-3\right)\left(y+1\right)=7\cdot1=1\cdot7\\ \left\{{}\begin{matrix}x-3=7\\y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=0\end{matrix}\right.\\ \left\{{}\begin{matrix}x-3=1\\y+1=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(10;0\right);\left(4;6\right)\right\}\)
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
\(a,x+13=5\\ \Rightarrow x=5-13\\ \Rightarrow x=-8\\ b,x-11=-18\\ \Rightarrow x=-18+11\\ \Rightarrow x=-7\)