tìm giá trị nhỏ nhất của M
5+(41-x)/(x-15)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu thức này không có GTNN bạn nhé. Bạn cần bổ sung thêm điều kiện để biểu thức C có GTNN.
\(4x-x^2-12=-x^2+4x-4-8=-\left(x-4x+4\right)-8=-\left(x-2\right)^2-8\le8\)
=> GTLN của đa thức là 8
<=> x-2 = 0
<=> x = 2
\(x^2+y^2-x+6y+15\)
\(=x^2-2.x.\frac{1}{2}+\frac{1}{4}+y^2+2.y.3+9+\frac{23}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{23}{4}\ge\frac{23}{4}\)
=> GTNN của đa thức là 23/4
<=> x-1/2=0 và y+3=0
<=> x=1/2 và y=-3
Có : A >= 0 + 8 = 8
Dấu "=" xảy ra <=> 1-x=0 <=> x=1
Vậy GTNN của A = 8 <=> x=1
Có : B < = 15 - 0 = 15
Dấu "=" xảy ra <=> x-7=0 <=> x=7
Vậy GTLN của B = 15 <=> x=7
Tk mk nha
a) A=|1-x|+8
=> A-8=|1-x|
=> Để |1-x| có giá trị nhỏ nhất thì A-8=0
=> 1-x =0 => -x=0-1 => -x= -1 => x=1
=> giá trị nhỏ nhất của biểu thức A là:
|1-1|+8=0+8=8
Vậy giá trị nhỏ nhất của biểu thức A là 8
a/ Ta có : \(\left|x-3\right|\ge0\)
\(\Leftrightarrow5-\left|x-3\right|\le5\)
Dấu "=" xảy ra khi :
\(\left|x-3\right|=0\Leftrightarrow x=3\)
Vậy ...
b/ \(\left|2+x\right|\ge0\)
\(15+\left|2+x\right|\ge15\)
Dấu "=" xảy ra khi :
\(\left|2+x\right|=0\Leftrightarrow x=-2\)
Vậy ...
Ta có: \(\left|x-3\right|\ge0\Rightarrow5-\left|x-3\right|\le5-0=5\)
\(\Rightarrow Max\left(5-\left|x-3\right|\right)=5\Leftrightarrow x=3\)
Ta có: \(\left|2+x\right|\ge0\Rightarrow15+\left|2+x\right|\ge15+0=15\)
\(\Rightarrow Min\left(15+\left|2+x\right|\right)=15\Leftrightarrow x=-2\)
a, A=15-|x+1|
Co: |x+1|> hoac = 0 voi moi x.
=>15-|x+1|< hoac = 15 vs moi x.
MAX A=15 khi |x+1|=0
=>x+1=0
x=-1.
b,Co: |x-2|> hoac bang 0.
=>18+|x-2|> hoac bang 18.
Min B=18 khi |x+2|=0
=>x+2=0
x=-2
Nho k cho mk nhe
ta có M =5+41-x/x-15
mà M là 1 tổng nên m nhỏ nhất khi 2 số hạng nhỏ nhất
=)) M nhỏ nhất khi 41-x/x-15 nhỏ nhất
mà 41-x/x-15 nhỏ nhất là -27
=)) m nhỏ nhất là 5+(-27) = -22
m nhỏ nhất = - 22