Chứng minh nếu 2(a+b)=5(b+c)=3(c+a) thì (a-b )/4 = (b-c)/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a^3+b^3+c^3}{3}.\frac{a^2+b^2+c^2}{2}=\frac{a^5+b^5+c^5+a^3\left(b^2+c^2\right)+b^3\left(a^2+c^2\right)+c^3\left(a^2+b^2\right)}{6}\)
\(=\frac{a^5+b^5+c^5+a^3\left(\left(b+c\right)^2-2bc\right)+b^3\left(\left(c+a\right)^2-2ca\right)+c^3\left(\left(a+b\right)^2-2ab\right)}{6}\)
\(=\frac{a^5+b^5+c^5+a^3\left(a^2-2bc\right)+b^3\left(b^2-2ca\right)+c^3\left(c^2-2ab\right)}{6}\)
\(=\frac{\left(a^5+b^5+c^5\right)-abc\left(a^2+b^2+c^2\right)}{3}\)
Ma ta lại có:
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\frac{a^3+b^3+c^3}{3}.\frac{a^2+b^2+c^2}{2}=\frac{3\left(a^5+b^5+c^5\right)-\left(a^3+b^3+c^3\right)\left(a^2+b^2+c^2\right)}{9}\)
\(\Rightarrow\frac{a^3+b^3+c^3}{3}.\frac{a^2+b^2+c^2}{2}=\frac{3\left(a^5+b^5+c^5\right)-\left(a^3+b^3+c^3\right)\left(a^2+b^2+c^2\right)}{9}\)
\(\Leftrightarrow\frac{5\left(a^3+b^3+c^3\right)\left(a^2+b^2+c^2\right)}{18}=\frac{\left(a^5+b^5+c^5\right)}{3}\)
\(\Leftrightarrow\frac{\left(a^3+b^3+c^3\right)\left(a^2+b^2+c^2\right)}{6}=\frac{\left(a^5+b^5+c^5\right)}{5}\) (ĐPCM)
a: \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
=>(a+5)(b-6)=(a-5)(b+6)
=>ab-6a+5b-30=ab+6a-5b-30
=>-6a+5b=6a-5b
=>-12a=-10b
=>6a=5b
=>\(\dfrac{a}{b}=\dfrac{5}{6}\)
b: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)
Chứng minh rằng nếu a,b,c là các số khác 0 thoả mãn : (ab+ac)/2=(ba+bc)/3=(ca+cb)/4 thì a/3=b/5=c/15
ta có (ab+ac)/2 = (ba+bc)/3 = (ca+cb)/4
=ab+ac-ba-bc+ca+cb/2-3+4 = 2ac/3
=ab+ac+ba+bc-ca-cb/2+3-4 = 2ab
=ab+ac-ba-bc-ca-cb/2-3-4 = 2bc/5
=> 2ac/3=2ab=2bc/5
Ta có 2ac/3=2ab/1 =>c/3 = b/1 => c/15 = b/5 (1)
2ac/3 = 2bc/5 => a/3 = b/5 (2)
từ (1) và(2) => a/3 = b/5 = c/15
b) ta có: 30=2.3.5
\(a^2\equiv a\left(mod2\right)\Rightarrow a^4\equiv a^2\equiv a\left(mod2\right)\)
\(\Rightarrow\hept{\begin{cases}a^5\equiv a^2\equiv a\left(mod2\right)\\b^3\equiv b\left(mod3\right)\\c^5\equiv c\left(mod5\right)\end{cases}\Rightarrow b^5\equiv b^3\equiv b\left(mod3\right)}\)
\(\Rightarrow a^5+b^5+c^5\equiv a+b+c\left(mod2.3.5\right)\)
\(a^2+b^2+c^2=\left(a+b+c\right)+\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
\(=\left(a+b+c\right)+a\left(a^2-1\right)+b\left(b^2-1\right)+c\left(c^2-1\right)\)
\(=\left(a+b+c\right)+\left(a-1\right)\left(a+1\right)+\left(b-1\right)\left(b+1\right)+\left(c-1\right)\left(c+1\right)\)
\(mà\)\(a\left(a-1\right)\left(a+1\right)⋮6\)
\(b\left(b-1\right)\left(b+1\right)⋮6\)
\(c\left(c-1\right)\left(c+1\right)⋮6\)
\(a+b+c⋮6\)
\(\Leftrightarrow(a^3+b^3+c^3)⋮6\)\((đpcm)\)
b, Ta có \(m=a+b+c\)
\(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)
CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)