Cho tam giác ABC cân tại A. Trên tia đối của BA lấy điểm D, trên tia đối của BC lấy điểm E sao cho BD=CE. Gọi K là giao điểm của CD và BE. Chứng minh rằng:
1) BE=CD.
2) tam giác BKD= tam giác CKE.
3) AK là phân giác của góc A.
4)gọi M,N lần lượt là trung điểm của BC và DE. Chứng minh A,M,K,N thẳng hàng.
tự vẽ hình nhé!
2) \(\Delta AEB=\Delta ADC\left(c.g.c\right)\)
=> \(\widehat{ABE}=\widehat{ACD}\)(2 góc2 t/ứ)
Mà \(\widehat{ABE}+\widehat{EBD}=180^o\)(kề bù)
\(\widehat{ACD}+\widehat{DCE}=180^o\)(kề bù)
Nên \(\widehat{EBD}=\widehat{DCE}\)
\(\Delta BKD=\Delta CKE\left(g.c.g\right)\)(đpcm)
3) \(\Delta BKD=\Delta CKE\)(câu 2) => KD = KE (2 cạnh t/ứ)
\(\Delta AKE=\Delta AKD\left(c.c.c\right)\)\(\Rightarrow\widehat{EAK}=\widehat{DAK}\)(2 góc t/ứ)
=> AK là p/g \(\widehat{BAC}\left(đpcm\right)\)
4) Có: KE = KD (\(\Delta CKE=\Delta BKD\))
=> K cách đều E và D
=> K nằm trên đường trung trực của ED (2)
Cần c/m \(AM⊥BC;AN⊥ED\)
Mà BC // ED (tự c/m) => A,M,N thẳng hàng (3)
Có N nằm trên đường trung trực của ED (4)
Từ (2);(3);(4) => A,M,K,N thẳng hàng (đpcm)
AI GIÚP MIK DZỚI