1.2+1.4+...+9.8
các bạn giúp mình nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)1.2+1.3+1.4+1.5=2+3+4+5=14
b)1.2+1.3+1.4=2+3+4=9
tk nha+kb nx!
Rút gọn phân số:
\(\frac{1.2+1.4+3.6+4.8}{2.3+4.6+6.9+8.12}\)
Làm giúp mk bài này nha!Cảm ơn mn nhiều!
\(\frac{1.2+1.4+3.6+4.8}{2.3+4.6+6.9+8.12}\)
=\(\frac{1.2}{2.3}\)+\(\frac{1.4}{4.6}\)+\(\frac{3.6}{6.9}\)+\(\frac{4.8}{8.12}\)
= \(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{3}\)+\(\frac{1}{3}\)
= \(\frac{2}{6}+\frac{1}{6}+\frac{2}{6}+\frac{2}{6}\)
=\(\frac{7}{6}\)
Mình nghĩ đề bài phải là:
\(\frac{1.2+2.4+3.6+4.8}{2.3+4.6+6.9+8.12}\) *2.3 + 4.6 + 6.9 + 8.12 = 3.(1.2 + 2.4 + 3.6 + 4.8)*
\(=\)\(\frac{1\left(1.2+2.4+3.6+4.8\right)}{3\left(1.2+2.4+3.6+4.8\right)}\)
\(=\)\(\frac{1}{3}\)
1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.
2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
...
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
3.
242 nha.
12+8drdhr547y