Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.
2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
...
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
3.
a) \(S=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(=1.2.3+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
b) \(S=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)
\(4S=1.2.3.4+2.3.4.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)
\(=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+2\right)\)
\(S=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
c) \(S=1.4+2.5+3.6+...+n\left(n+3\right)\)
\(=1.2+1.2+2.3+2.2+3.4+3.2+...+n\left(n+1\right)+2n\)
\(=\left(1.2+2.3+3.4+...+n\left(n+1\right)\right)+2\left(1+2+3+...+n\right)\)
\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+n\left(n+1\right)\)
\(=\frac{n\left(n+1\right)\left(n+5\right)}{3}\)
a/
\(A=1.2+1.2+2.3+2.2+3.4+3.2+...+66.67+66.2=\)
\(=\left(1.2+2.3+3.4+...+66.67\right)+2\left(1+2+3+...+66\right)\)
Đặt
\(B=1+2+3+...+66=\dfrac{66\left(1+66\right)}{2}=2211\)
Đặt
\(C=1.2+2.3+3.4+...+66.67\)
\(3C=1.2.3+2.3.3+3.4.3+...+66.67.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+66.67.\left(68-65\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-65.66.67+66.67.68=\)
\(=66.67.68\Rightarrow C=\dfrac{66.67.68}{3}=22.67.68\)
\(\Rightarrow A=C+2B\) Bạn tự tính nhé
b/
\(B=2\left(1.50+2.49+3.48+...+25.26\right)=\)
Ta có
\(C=1.50+2.49+3.48+...+25.26=\)
\(\left(50-49\right).50+\left(50-48\right).49+\left(50-47\right).48+...+\left(50-25\right).26=\)
\(=50.50-49.50+50.49-48.49+50.48-47.48+50.26-25.26=\)
\(=50.\left(26+27+28+...+50\right)-\left(25.26+26.27+27.28+...+49.50\right)\)
Ta có
\(D=26+27+28+...+50=\dfrac{25.\left(26+50\right)}{2}=950\)
Ta có
\(E=25.26+26.27+27.28+...+49.50\)
\(3E=25.26.3+26.27.3+27.28.3+...+49.50.3=\)
\(=25.26.\left(27-24\right)+26.27.\left(28-25\right)+...+49.50.\left(51-48\right)=\)
\(=-24.25.26+25.26.27-25.26.27+26.27.28-...-48.49.50+49.50.51=\)
\(=49.50.51-24.25.26\)
\(\Rightarrow E=\dfrac{49.50.51-24.25.26}{3}\)
\(\Rightarrow C=50D-E\)
\(B=2C\)
Bạn tự tính nhé
Giải:
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}\)
\(=\dfrac{1}{1}-\dfrac{1}{2009}\)
\(=\dfrac{2008}{2009}\)
c) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{4}{7.10}+...+\dfrac{3}{94.97}\)
\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)
\(=\dfrac{1}{1}-\dfrac{1}{97}\)
\(=\dfrac{96}{97}\)
Vậy ...
Các câu sau tương tự
b, \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{2008.1009}\)
\(=\)\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2008}-\dfrac{1}{2009}\)
\(=\dfrac{1}{1}-\dfrac{1}{2009}=\dfrac{2009}{2009}-\dfrac{1}{2009}=\dfrac{2008}{2009}\)
a) \(A=1+2+2^2+...+2^{2016}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2017}\right)-\left(1+2+2^2+...+2^{2016}\right)\)
\(\Rightarrow A=2^{2017}-1\)
Vậy \(A=2^{2017}-1\)
b) \(B=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)
\(\Rightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4B=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(\Rightarrow B=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
Vậy...