7 + 7 ....... 7 x 2
( > , < , = )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow-\dfrac{7}{3}+\dfrac{5}{2}< \left|x-\dfrac{2}{7}\right|< -\dfrac{7}{4}+\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{1}{6}< \left|x-\dfrac{2}{7}\right|< \dfrac{3}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{6}< x-\dfrac{2}{7}< \dfrac{3}{4}\\-\dfrac{3}{4}< x-\dfrac{2}{7}< -\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{19}{42}< x< \dfrac{29}{28}\\-\dfrac{13}{28}< x< \dfrac{5}{42}\end{matrix}\right.\)
mà x>0
nên \(\left[{}\begin{matrix}\dfrac{19}{42}< x< \dfrac{29}{28}\\0< x< \dfrac{5}{42}\end{matrix}\right.\)
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
nhớ tách câu ra nha lộn xà ngầu hết lên
1. x+7>x+5
2. x-3<x+7
3. x+10>x+7
1. \(x+7=x+5+2>x+5\)
2. \(x-3=x+7-10< x+7\)
3. \(x+10=x+7+3>x+7\)
\(\Rightarrow\) đpcm
1/
\(B=\frac{1}{\sqrt{2}}\left(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{7}+1-\sqrt{7}+1\right)=\sqrt{2}\)
\(\Rightarrow B>1\)
Mà \(\left\{{}\begin{matrix}\sqrt[3]{4+\sqrt{7}}< \sqrt[3]{4+\sqrt{16}}=2\\\sqrt[3]{4-\sqrt{7}}>\sqrt[3]{4-\sqrt{9}}=1\end{matrix}\right.\)
\(\Rightarrow A=\sqrt[4]{4+\sqrt{7}}-\sqrt[3]{4-\sqrt{7}}< 2-1=1\)
\(\Rightarrow A< B\)
2/ ĐKXĐ: \(x\ge-3\)
Đặt \(\sqrt{x+3}=a\ge0\) ta được:
\(2x^2+a^2=3ax\Leftrightarrow2x^2-3ax+a^2=0\)
\(\Leftrightarrow\left(x-a\right)\left(2x-a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=a\\2x=a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{x+3}\\2x=\sqrt{x+3}\end{matrix}\right.\) (\(x\ge0\))
\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+3\\4x^2=x+3\end{matrix}\right.\) \(\Leftrightarrow...\)
a) \(A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2+25\)
\(A=5x^3-15x+7x^2-5x^3-7x^2+25\)
\(A=-15x+25\)
Thay x = -5 vào A
\(A=-15.\left(-5\right)+25\)
\(A=75+25=100\)
b) \(B=x\left(x-y\right)+y\left(x-y\right)\)
\(B=\left(x-y\right)\left(x+y\right)\)
\(B=x^2-y^2\)
Thay x =1,5 và y = 10 vào B
\(B=\left(1,5\right)^2-10^2\)
\(B=2,25-100=-97,75\)
ĐKXĐ \(x\ge0\)
\(\Leftrightarrow\sqrt{x}+\sqrt{x+7}+2\sqrt{x^2+7x}+2x+7=42\)
Đặt \(\sqrt{x}+\sqrt{x+7}=a>0\Rightarrow a^2=2x+7+2\sqrt{x^2+7x}\)
\(a+a^2=42\Leftrightarrow a^2+a-42=0\Rightarrow\left[{}\begin{matrix}a=6\\a=-7< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\sqrt{x+7}=6\Leftrightarrow2x+7+2\sqrt{x^2+7x}=36\)
\(\Leftrightarrow2\sqrt{x^2+7x}=29-2x\) \(\left(x\le\frac{29}{2}\right)\)
\(\Leftrightarrow4\left(x^2+7x\right)=\left(29-2x\right)^2\)
\(\Leftrightarrow4x^2+28x=841-116x+4x^2\)
\(\Leftrightarrow144x=841\)
\(\Rightarrow x=\frac{841}{144}\)
a) \(x+x\times\frac{1}{4}\div\frac{2}{7}+x\div\frac{2}{9}=255\)
\(\Rightarrow x+x\times\frac{1}{4}\times\frac{7}{2}+x\times\frac{9}{2}=255\)
\(\Rightarrow x+x\times\frac{7}{8}+x\times\frac{9}{2}=255\)
\(\Rightarrow x\times\left(1+\frac{7}{8}+\frac{9}{2}\right)=255\)
\(\Rightarrow x\times\frac{51}{8}=255\)
\(\Rightarrow x=255\div\frac{51}{8}\)
\(\Rightarrow x=40\)
Vậy x = 40
b) \(1\frac{1}{21}\div\left(15,75-15\frac{1}{5}\right)+2\frac{1}{12}\div\left(7\frac{3}{4}-7,25\right)\)
\(=\frac{22}{21}\div\left(15,75-\frac{76}{5}\right)+\frac{25}{12}\div\left(\frac{31}{4}-7,25\right)\)
\(=\frac{22}{21}\div\frac{11}{20}+\frac{25}{12}\div\frac{1}{2}\)
\(=\frac{40}{21}+\frac{25}{6}\)
\(=\frac{85}{14}\)
_Chúc bạn học tốt_
X + X x 1/4 : 2/7 + x : 2/9 = 225
X + X x 1/4 x 7/2 + X x 9/2 = 225
X + X x 7/8 + X x 9/2 = 225
X x ( 1 + 7/8 + 9/2 ) = 225
X x 51/8 = 225
X = 225 : 51/8
X = 600/17
7+7=7*2
Tk cho mik nhé!
7+7 = 7x2
tk mk nhé