Giải PT: \(\left(x+1\right).\sqrt{x^2-2x+3}=x^2+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3+7\left(xy+x+y+1\right)=31\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3+\left(xy\right)^3+7\left(xy+x+y\right)=30\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\) với \(u^2\ge4v\)
\(\Rightarrow\left\{{}\begin{matrix}uv=2\\u^3+v^3+7\left(u+v\right)=30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3-3uv\left(u+v\right)+7\left(u+v\right)=30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3+\left(u+v\right)-30=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\u+v=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=2\\v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\) \(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\)
2.
ĐKXĐ: \(0\le x\le\dfrac{3}{2}\)
\(\Leftrightarrow9x\left(3-2x\right)+81+54\sqrt{x\left(3-2x\right)}=49x+25\left(3-2x\right)+70\sqrt{x\left(3-2x\right)}\)
\(\Leftrightarrow9x^2-14x-3+8\sqrt{x\left(3-2x\right)}=0\)
\(\Leftrightarrow9\left(x^2-2x+1\right)-4\left(3-x-2\sqrt{x\left(3-2x\right)}\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2-\dfrac{36\left(x-1\right)^2}{3-x+2\sqrt{x\left(3-2x\right)}}=0\)
\(\Leftrightarrow9\left(x-1\right)^2\left(1-\dfrac{4}{3-x+2\sqrt{x\left(3-2x\right)}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\3-x+2\sqrt{x\left(3-2x\right)}=4\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\sqrt{x\left(3-2x\right)}=x+1\)
\(\Leftrightarrow4x\left(3-2x\right)=x^2+2x+1\)
\(\Leftrightarrow9x^2-10x+1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)
\(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\)
\(\Leftrightarrow\left(x+1\right)\sqrt{x^2-2x+3}-2\left(x+1\right)-\left(x^2-2x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\sqrt{x^2-2x+3}-2\right)-\left(x^2-2x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\dfrac{x^2-2x+3-2^2}{\sqrt{x^2-2x+3}+2}-\left(x^2-2x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(\dfrac{x+1}{\sqrt{x^2-2x+3}+2}-1\right)=0\)
\(\Leftrightarrow x^2-2x-1=0\)
(vì \(\sqrt{x^2-2x+3}>\sqrt{x^2-2x+1}=\left|x-1\right|\ge x-1=x+1-2\)
\(\Leftrightarrow\sqrt{x^2-2x+3}+2>x+1\Leftrightarrow\dfrac{x+1}{\sqrt{x^2-2x+3}+2}< 1\))
\(\Leftrightarrow x=1\pm\sqrt{2}\).