Câu 1: a/ (-5xy2z2).(x3yz).(19x7y9)0
b/1 (2/3x3y2).(-1/2x2y3)2
c/ (-2/17x3y5).34/5x2y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đồng dạng 1:\(10x^3y^2;-3x^3y^2;-5x^3y^2\)
Tổng :\(10x^3y^2+-3x^3y^2+-5x^3y^2=2x^3y^2\)
Đồng dạng 2:\(x^2y^3;\dfrac{1}{2}x^2y^3;-6x^2y^3\)
Tổng:\(x^2y^3+\dfrac{1}{2}x^2y^3+-6x^2y^3=\dfrac{-9}{2}x^2y^3\)
1: \(\dfrac{11}{x^4y};\dfrac{3}{xy^3}\)
\(\dfrac{11}{x^4y}=\dfrac{11\cdot y^2}{x^4y^3}=\dfrac{11y^2}{x^4y^3}\)
\(\dfrac{3}{xy^3}=\dfrac{3\cdot x^3}{xy^3\cdot x^3}=\dfrac{3x^3}{x^4y^3}\)
2: \(\dfrac{2}{3x^3y^2};\dfrac{3}{4x^7y}\)
\(\dfrac{2}{3x^3y^2}=\dfrac{2\cdot4\cdot x^4}{3x^3y^2\cdot4x^4}=\dfrac{8x^4}{12x^7y^2}\)
\(\dfrac{3}{4x^7y}=\dfrac{3\cdot3\cdot y}{4x^7y\cdot3y}=\dfrac{9y}{12x^7y^2}\)
\(1,=3x^2-6x+x-2=3x^2-5x-2\\ 2,??\\ 3,=3x^3y^2:3xy+6x^2y^3:3xy-12xy^4:3xy=x^2y+2xy^2-4y^3\\ 4,=3x^3y^2:4xy+6x^2y^3:4xy-12xy^4:4xy\\ =\dfrac{3}{4}x^2y+\dfrac{3}{2}xy^2-3x^3\\ 5,\left(2x^3-5x^2+7x-6\right):\left(2x-3\right)=x^2-x+2\\ 6,\left(x^4-x^3+3x^2+x+2\right):\left(x^2-1\right)=x^2-x+4\left(dư6\right)\)
1: =3x^2+x-6x-2=3x^2-5x-2
3: =x^2y+2xy^2-4y^3
4: =3/4x^2y+3/2xy^2-3y^3
5: \(=\dfrac{2x^3-3x^2-2x^2+3x+4x-6}{2x-3}=x^2-x+2\)
Ta có
M = ( x 4 y n + 1 - 1 2 x 3 y n + 2 ) : ( 1 2 x 3 y n ) - 20 x 4 y : 5 x 2 y = ( x 4 y n + 1 : 1 2 x 3 y n ) - ( 1 2 x 3 y n + 2 ) : ( 1 2 x 3 y n ) - 4 x 2 = 2 x 4 - 3 y n + 1 - n – x 3 - 3 y n + 2 - n – 4 x 2 = 2 x y – y 2 – 4 x 2 = - y 2 – 2 x y + x 2 + 3 x 2 = - [ ( x – y ) 2 + 3 x 2 ]
Vì với x;y ≠ 0 thì ( x – y ) 2 + 3 x 2 > 0 nên - [ ( x – y ) 2 + 3 x 2 ] < 0 ; Ɐ x;y ≠ 0
Hay giá trị của M luôn là số âm
Đáp án cần chọn là: A
a: \(=2\cdot\dfrac{-5}{2}\cdot x^2y^3\cdot x^2y^3=-5x^4y^6\)
Hệ số là -5
Biến là x^4;y^6
Bậc là 10
b: \(=6\cdot\dfrac{1}{3}\cdot x^2y^2z\cdot xy^3=2x^3y^5z\)
Hệ số là 2
Biến là x^3;y^5;z
Bậc là 9
c: =xy^2(8+5-4)
=9xy^2
Bậc là 3
Hệ số là 9
Biến là x;y^2
d: =x^2y(-1/2+1/3-1)
=-7/6x^2y
Hệ số là -7/6
Biến là x^2;y
Bậc là 3
a: \(=xy\left(5x-1\right)\)
b: \(=\left(x-2\right)\left(3x-5\right)\)