Tớ cần sự giúp đỡ!!!
Cho tam giác ABC, điểm D là trọng tâm của tam giác. Gọi E là giao điểm các đường phân giác của góc ABD và ACD. Chứng minh: Tam giác ABC cân khi và chỉ khi A,E,D thẳng hàng.
HELP ME!!! Tối mùng 2 tớ cần nộp luôn rồi!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABH và tam giác ACH vuông tại H có: +, AB = AC ( vì tam giác ABC cân tại A)
+, AH chung
=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm
b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng
c, Vì tam giác ABH = tam giác ACH => góc BAH = góc CAH
Xét tam giác ABG và tam giác ACG có
AB = AC ( vì tam giác ABC cân tại A )
góc BAH = góc CAH ( chứng minh trên)
AG chung
=>tam giác ABG = tam giác ACG(c.g.c)
=> góc ABG = góc ACG
Đáp án:
a)
Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=5√3(cm)Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=53(cm)
b) Xét ΔABD và ΔEBD vuông tại A và E có:
+góc ABD = góc EBD
+ BD chung
=>ΔABD = ΔEBD (cg-gn)
c) Xét ΔABC và ΔEBF vuông tại A và E có:
+ AB = EB (do ΔABD = ΔEBD)
+ góc ABC chung
=>ΔABC = ΔEBF (cgv-gn)
d) Do ΔABC = ΔEBF nên BC = BF
Xét ΔBFG và ΔBCG có:
+ BF = BC
+ BG chung
+ FG = CG
=> ΔBFG = ΔBCG (c-c-c)
=> góc FBG = góc CBG
=> BG là phân giác của góc ABC
=> BG đi qua D
=> AC,BG, EF đồng quy tại D.
a)
Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=5√3(cm)Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=53(cm)
b) Xét ΔABD và ΔEBD vuông tại A và E có:
+góc ABD = góc EBD
+ BD chung
=>ΔABD = ΔEBD (cg-gn)
c) Xét ΔABC và ΔEBF vuông tại A và E có:
+ AB = EB (do ΔABD = ΔEBD)
+ góc ABC chung
=>ΔABC = ΔEBF (cgv-gn)
d) Do ΔABC = ΔEBF nên BC = BF
Xét ΔBFG và ΔBCG có:
+ BF = BC
+ BG chung
+ FG = CG
=> ΔBFG = ΔBCG (c-c-c)
=> góc FBG = góc CBG
=> BG là phân giác của góc ABC
=> BG đi qua D
=> AC,BG, EF đồng quy tại D.
a, Xét tam giác ABD và tam giác EBD có:
góc BAD=BED(tam giác abc vuông, DE vuông góc BC)
BD=BD(chung)
góc ABD=EBD (BD là phân giác)
=)tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
vậy.....
b,gọi giao của AE và BD là O
ta có tam giác ABD=tam giác EBD
=)AB=BE ( 2 cạnh tưng ứng)
xét tam giác ABO và tam giác EBO có:
AB=BE (cmt)
góc ABO=EBO ( BD là phân giác)
BO=BO ( chung)
=)tam giác ABO=EBO (c-g-c)
=)AO=OE ( 2 cạnh tương ứng)(1)
AOB=EOB( 2 góc tương ứng)
mà AOB+EOB=180 độ ( 2 góc kề bù)
=)AOB=EOB=180:2=90độ
=)BO vuông góc AE (2)
từ(1) và (2)=)BO là trung trực AE
vậy....
c, Ta có tam giác DEC vuông tại E
=)DC>DE ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà DE=DA ( tam giác ABD= tam giác EBD)
=)DC>DA
hay DA<DC
vậy....
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔBAD=ΔBED
nên BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE\(\left(1\right)\)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE
Chứng minh chiều thuận:
Giả sử có tam giác ABC cân tại A, đương nhiên trung tuyến và phân giác kẻ từ A của tam giác này trùng nhau. Mà trọng tâm D thuộc trung tuyến kẻ từ A, giao điểm các đường phân giác trong E thuộc phân giác trong kẻ từ A nên AD, AE trùng nhau, do đó A, D, E thẳng hàng.
Chứng minh chiều đảo:
Giả sử A, D, E thẳng hàng. Dễ thấy rằng khi đó AD, AE lần lượt là trung tuyến và phân giác trong của tam giác ABC. Mà A, D, E thẳng hàng \(\Rightarrow AD\equiv AE\), do đó tam giác ABC cân tại A (Dấu hiệu nhận biết)
À không, xin lỗi bạn, bài đó mình làm lộn đề đó. Bài này mới đúng nhé:
thuận: (giả sử tam giác ABC cân tại A):
Khi đó \(\widehat{ABC}=\widehat{ACB}\). Mà BD, CD là 2 trung tuyến kẻ từ B, C nên \(BD=CD\) \(\Rightarrow\widehat{DBC}=\widehat{DCB}\). Từ đó dễ thấy \(\widehat{DBA}=\widehat{DCA}\), mà BE, CE là các phân giác của \(\widehat{DBA},\widehat{DCA}\) nên \(\widehat{DBE}=\widehat{DCE}\). Từ đây dễ thấy \(\widehat{EBC}=\widehat{ECB}\) \(\Rightarrow EB=EC\). Do đó, E nằm trên đường trung trực của đoạn BC.
Mà AD chính là trung trực của BC (Do tam giác ABC cân tại A có AD là trung tuyến) \(\Rightarrow E\in AD\Rightarrowđpcm\)
đảo: (giả sử A,D,E thẳng hàng)
Ta thấy AD chính là trung trực của đoạn BC, mà A,D,E thẳng hàng nên E thuộc trung trực của BC \(\Rightarrow EB=EC\Rightarrow\widehat{EBC}=\widehat{ECB}\)
Đồng thời \(\widehat{DBC}=\widehat{DCB}\) , từ đó \(\Rightarrow\widehat{DBE}=\widehat{DCE}\)
Mà BE, CE lần lượt là phân giác của \(\widehat{DBA},\widehat{DCA}\) nên \(\widehat{DBA}=\widehat{DCA}\). Bằng phép cộng góc, ta dễ dàng suy ra \(\widehat{ABC}=\widehat{ACB}\) \(\Rightarrow\Delta ABC\) cân tại A.