N= x/2+x/6+x/12+...+x/110 Tại x=2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...\left|x+\frac{1}{110}\right|=11x\)
\(\Leftrightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...\left|x+\frac{1}{110}\right|\ge0\)
\(\rightarrow11x\ge0\rightarrow x\ge0\)
\(\text{Ta có:}\)
\(x+\frac{1}{2}+...+x+\frac{1}{110}=11x\)
\(\rightarrow10x+\frac{10}{11}=11x\)
\(\rightarrow x=\frac{10}{11}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{11-10}{10.11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
Phương trình ban đầu tương đương với:
\(10x+\frac{10}{11}=11x\)
\(\Leftrightarrow x=\frac{10}{11}\)
Ta có: \(\left|x+\frac{1}{2}\right|\ge0;\left|x+\frac{1}{6}\right|\ge0;...;\left|x+\frac{1}{110}\ge0\right|\)
=> \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{100}\right|\ge0\)
=> 11x \(\ge\)0 => x\(\ge\)0
=> \(x+\frac{1}{2}>0;x+\frac{1}{6}>0;...;x+\frac{1}{110}>0\)
=> \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{6}\right|=x+\frac{1}{6};...;\left|x+\frac{1}{110}\right|=x+\frac{1}{110}\)
=> \(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{110}\right)=11x\)
=> 10x + \(\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=11x\)
=> 10x + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)\)= 11x
=> 10x + \(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)= 11x
=> 10x + \(\frac{10}{11}\)= 11x
=> x = \(\frac{10}{11}\)
Vậy x = \(\frac{10}{11}\)
\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+...+\left|x+\dfrac{1}{110}\right|=11x\left(đk:x\ge0\right)\)
\(\Leftrightarrow x+\dfrac{1}{2}+x+\dfrac{1}{6}+x+\dfrac{1}{12}+...+x+\dfrac{1}{110}=11x\)
\(\Leftrightarrow10x+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{10.11}\right)=11x\)
\(\Leftrightarrow x=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(\Leftrightarrow x=1-\dfrac{1}{11}=\dfrac{10}{11}\left(tm\right)\)
\(A=m^2\left(m+n\right)-n^2m-n^3\)
\(=m^2\left(m+n\right)-n^2\left(m+n\right)\)
\(=\left(m^2-n^2\right)\left(m+n\right)\)
Thay \(m=-2017;n=2017\) vào A , ta được :
\(A=\left[\left(-2017\right)^2-2017^2\right]\left(-2017+2017\right)=0\)
Vậy \(A=0\) tại \(m=-2017;n=2017\)
\(B=x^3-3x^2-x\left(3-x\right)\)
\(=x^2\left(x-3\right)+x\left(x-3\right)\)
\(=\left(x^2+x\right)\left(x-3\right)\)
\(=x\left(x+1\right)\left(x-3\right)\)
Thay \(x=13\) vào B , ta được :
\(13\left(13+1\right)\left(13-3\right)=13.14.10=1820\)
Vậy \(B=1820\) tại \(x=13\)
ta có
1+2+3+.........+x=5050
=>\(\frac{x.\left(x+1\right)}{2}=5050\)
=>x.(x+1)=5050.2
=>x.(x+1)=10100
=>x.(x+1)=100.101
=>x=100
\(\frac{20170}{11}\)
N= 2017.(1/2 +1/6 +...+1/110)
Ta thấy 1/2 +1/6 +...+1/110= 1/(1.2) + 1/(2.3) +...+ 1/(10.11)
= 1 - 1/2 + 1/2 -1/3 + ...+ 1/10 -1/11
= 1 - 1/11 =10/11
Suy ra N = 2017 .10/11