3 . 52 - 16 : 22
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Rightarrow16-3x=504:72=7\\ \Rightarrow3x=16-7=9\Rightarrow x=3\\ \left(2^2\cdot x-5^2\right)\cdot3^8=3^9\\ \Rightarrow4x-25=3^9:3^8=3\\ \Rightarrow4x=28\Rightarrow x=7\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a. $=58(75+50-25)=58.100=5800$
b. $=27.8+4.9-5=216+36-5=247$
Bài 3:
a.
$(x-38):16=12$
$x-38=16\times 12=192$
$x=192+38 = 230$
b.
$10+2x=4^5:4^3=4^2=16$
$2x=16-10=6$
$x=6:2=3$
c.
$440+2(125-x)=546$
$2(125-x)=546-440=106$
$125-x=106:2=53$
$x=125-53=72$
d.
$(x-15):5+20=22$
$(x-15):5=22-20=2$
$x-15=2\times 5=10$
$x=10+15=25$
e.
$2x-138=2^3.3^2=8.9=72$
$2x=72+138 = 210$
$x=210:2=105$
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 36:{336:[200–(12+8.20)]}
= 36:{336:[200–(12+160)]}
= 36:{336:[200–172]}
= 36:{336:28}
= 36:12 = 3
b, {145–[130–(246–236)]:2}.5
= {145–[130–10:2]}.5
= {145–130}.5
= 20.5 = 100
c, 100:{250:[450–(4. 5 3 – 2 2 .25]}
= 100:{250:[450–400]}
= 100:{250:50}
= 100:5 = 20
d, 798+100:[16–2.( 5 2 –22)]
= 798+100:10
= 798+10 = 808
e, (6954+1525:5+47.19).(29–58.2)
= (6954+1525:5+47.19).0 = 0
f, 2 4 .157– 2 4 .58+16
= 16.(157–58+1) = 1600
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\) \(5^{13}:5^{10}-25.2^2=5^3-25.4=125-100=25\)
\(b)\) \(20:2^2+5^9:5^8=20:4+5^1=5+5=10\)
\(c)\) \(100:5^2+7.3^2=100:25+7.9=4+36=40\)
\(d)\) \(84:4+3^9:3^7+5^0=84:4+3^2+1=21+9+1=31\)
\(e)\)
\(29-\left[16+3.\left(51-49\right)\right]=29-\left[16+3.2\right]=29-\left[16+6\right]=29-22=7\)
\(f)\) \(5.2^2+98:7^2=5.4+98:49=20+2=22\)
\(g)\) \(3^{11}:3^9-147:7^2=3^2-147:49=9-3=6\)
\(295-\left(31-2^2.5\right)^2=295-\left(31-4.5\right)^2=295-\left(31-20\right)^2=295-11^2=295-121=174\)
\(7^{18}:7^{16}+2^2.3^2=7^2+4.9=49+36=85\)
a: \(5^{13}:5^{10}-25\cdot2^2\)
\(=5^3-25\cdot4\)
=125-100
=25
b: \(20:2^2+5^9:5^8\)
\(=20:4+5\)
=5+5
=10
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(12+2^2+3^2+4^2+5^2\)
\(=12+4+9+16+25\)
\(=16+50=66\)
\(\left(1+2+3+4+5\right)^2=15^2=225\)
=>\(12+2^2+3^2+4^2+5^2< \left(1+2+3+4+5\right)^2\)
b: \(1^3+2^3+3^3+4^3=\left(1+2+3+4\right)^2< \left(1+2+3+4\right)^3\)
c: \(5^{202}=5^2\cdot5^{200}=25\cdot5^{200}>16\cdot5^{200}\)
d: \(18\cdot4^{500}=18\cdot2^{1000}\)
\(2^{1004}=2^4\cdot2^{1000}=16\cdot2^{1000}\)
=>\(18\cdot4^{500}>2^{1004}\)
e: \(2022\cdot2023^{2024}+2023^{2024}=2023^{2024}\left(2022+1\right)\)
\(=2023^{2025}\)
\(3\times5^2-16:2^2\)
\(=3\times25-16:4\)
\(=75-16:4\)
\(=75-4\)
\(=71\)
=3.25-16:4
=75-4=71