Chứng tỏ rằng \(\frac{3}{1^2.2^2}\)+\(\frac{5}{2^2.3^2}\)+\(\frac{7}{3^2.4^2}\)+......+\(\frac{199}{99^2.100^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=\frac{9999}{10000}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=\frac{9999}{10000}\)
Ta có
\(M=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^3.3^2}+.....+\frac{100^2-99^2}{99^2.100^2}\)
\(M=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+......+\frac{1}{99^2}-\frac{1}{100^2}\)
\(M=1-\frac{1}{100^2}< 1\)
=> M<1
\(M=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{100^2-99^2}{99^2.100^2}\)
\(M=\frac{2^2}{1^2.2^2}-\frac{1^2}{1^2.2^2}+\frac{3^2}{2^2.3^2}-\frac{2^2}{2^2.3^2}+\frac{4^2}{3^2.4^2}-\frac{3^2}{3^2.4^2}+...+\frac{100^2}{99^2.100^2}-\frac{99^2}{99^2.100^2}\)
\(M=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=1-\frac{1}{100^2}
\(\text{ta thấy }\frac{3}{1^2.2^2}=\frac{1}{1^2}-\frac{1}{2^2};\frac{5}{2^2.3^2}=\frac{1}{2^2}-\frac{1}{3^2};....;\frac{199}{99^2.100^2}=\frac{1}{99^2}-\frac{1}{100^2}\)
\(\text{suy ra }\)\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{199}{99^2.100^2}=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{99^2}-\frac{1}{100^2}\)
\(=\frac{1}{1^2}-\frac{1}{100^2}=\frac{1}{1}-\frac{1}{10000}=\frac{10000}{10000}-\frac{1}{10000}=\frac{9999}{10000}
Xét số bất kì a. Ta sẽ chứng mỉnh (a + 1)2 - a2 = 2a + 1.
Thật vậy, ta có (a + 1)2 - a2 = a(a + 1) + (a + 1) - a2 = (a2 + a) + (a + 1) = 2a + 1 (đpcm).
Áp dụng ta có:
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=\frac{1}{1^2}-\frac{1}{10^2}< 1\left(đpcm\right)\)
A=3 /1^2.2^2 +5 / 2^2.3^2 +7/3^2.4^2 +...+ 19 /9^2.10^2
=1/1^2-1/2^2+1/2^2-1/3^2+1/3^2-1/4^2+....+1/9^2-1/10^2
=1/1^2-1/10^2
=99/100
=0,99
vậy A< 1
Ta có:
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
= \(\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)
= \(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)
= \(1-\frac{1}{10^2}\)< 1
Vậy
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\) <1
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+.....+\frac{19}{9^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+.....+\frac{19}{81.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=1-\frac{1}{10^2}< 1\)