Cho:
\(A=x^3+x^2y-5^2+10xy+7y^3+8.\)
\(B=y^3-3x^2y+6y^2+2xy^2-19xy-8x^3+2.\)
Tính:A+B
A-B
B-A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2
bai2 :cmr
a, a^3+b^3=(a+b)^3-3ab.(a+b)
VP= \(\left(a+b\right)^3-3ab\left(a+b\right)\)
=\(a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2=a^3+b^3\)
=VT
b.a^3-b^3=(a-b)^3+3ab,(a-b)
\(VP=\left(a-b\right)^3+3ab\left(a-b\right)\)
=\(a^3-3a^2b+ab^2.3-b^3+3a^2b-3ab^2=a^3-b^3\)
=VT
=> ĐPCM
bài 1.
a) = 8x^3+4x^2y+2xy^2-4x^2y-2xy^2-y^3-(8x^3-4x^2y+2xy^2+4x^2y-2xy^2+y^3)
= 8x3+4x2y+2xy2-4x2y-2xy2-y3 - 8x3+4x2y-2xy2-4x2y+2xy2-y3
=-8x2y-6y3
b) = 27x3-18x2y+12xy2+18x2y-12xy2+8y3-27x3
=8y
1 ) a) \(4x^2-x^2+8x^2\)
\(=\left(4+8\right).x^2+x^2-x^2\)
\(=12.x^3\)
b) \(\frac{1}{2}.x^2.y^2-\frac{3}{4}.x^2.y^2+x^2.y^2\)
\(\left(\frac{1}{2}-\frac{3}{4}\right).x^2.x^2.x^2.+y^2+y^2+y^2\)
\(=-\frac{1}{4}.x^6+y^6\)
c) \(3y-7y+4y-6y\)
\(=\left(3-7+4-6\right).y.y.y.y\)
\(=-6.y^4\)
2)
\(\left(-\frac{2}{3}.y^3\right)+3y^2-\frac{1}{2}.y^3-y^2\)
\(\left(-\frac{2}{3}+3-\frac{1}{2}\right).y^3.y^3-y\)
\(=\frac{25}{6}.y^5\)
b) \(5x^3-3x^2+x-x^3-4x^2-x\)
\(=\left(5-3-4\right).\left(x^3.x^2+x-x^3-x^2-x\right)\)
\(=-2.0=0\)
hông chắc
3)a) \(5xy^2.\frac{1}{2}x^2y^2x\)
\(\left(5.\frac{1}{2}\right).x^2.x^2.x.y^2.y^2\)
\(=\frac{5}{2}.x^5.y^4\)
b) Tổng các bậc của đơn thức là
5+4 = 9
Hệ số của đơn thức là \(\frac{5}{2}\)
Phần biến là x;y
Thay x=1;y=-1 vào đơn thức
\(\frac{5}{2}.1^5.\left(-1\right)^4\)
\(\frac{5}{2}.1.\left(-1\right)\)
\(\frac{5}{2}.\left(-1\right)=-\frac{5}{2}\)
Vậy ....
chắc không đúng đâu uwu
\(A+B=x^3+x^2y-5^2+10xy+7y^3+8+y^3-3x^2y+6y^2+2xy^2-19xy-8x^3+2.\)
\(=x^3-8x^3+x^2y-3x^2y+10xy-19xy+7y^3+y^3+6y^2+2xy^2-25+8+2.\)
\(=-7x^3-2x^2y-9xy+8y^3+2y^2\left(3+x\right)-15.\)