cho tam giác ABC có các đường cao BK và CI cắt nhau tại H.
a) chứng minh AI.AB=AK.AC
b) chứng minh Δ AIK và Δ ACB đồng dạng
c) chứng minh BI.BA+CK.CA=BC2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao của AH với BC là E
=>AH vuông góc BC tại E
Xét ΔBIC vuông tại I và ΔBEA vuông tại E có
góc EBA chung
=>ΔBIC đồng dạng với ΔBEA
=>BI/BE=BC/BA
=>BE*BC=BA*BI
Xét ΔCKB vuông tại K và ΔCEA vuông tại E có
góc KCB chung
=>ΔCKB đồng dạng với ΔCEA
=>CK/CE=CB/CA
=>CK*CA=CE*CB
BI*BA+CK*CA
=BE*BC+CE*BC
=BC^2
a: Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hình bình hành
b: Xét ΔAKB vuông tại K và ΔAIC vuông tại I có
góc KAB chung
=>ΔAKB đồng dạng với ΔAIC
=>AK/AI=AB/AC
=>AK*AC=AB*AI; AK/AB=AI/AC
c: Xét ΔAKI và ΔABC có
AK/AB=AI/AC
góc KAI chung
=>ΔAKI đồng dạng với ΔABC
Ui cho mình xin lỗi nãy mình bấm nhầm nhé )))):
Xét ∆ABK và ∆ACG:
A: góc chung
\(\widehat{AKB}=\widehat{AGC}=90^o\)
=> ∆ABK\(\sim\)∆ACG(g.g)
b) Vì ∆ABK\(\sim\)∆ACG (theo câu a)
=> \(\dfrac{AB}{AK}=\dfrac{AC}{AG}\Leftrightarrow AB.AG=AC.AK\)
Vì \(\dfrac{AB}{AK}=\dfrac{AC}{AG}\left(cmt\right)\)
=>\(\dfrac{AB}{AC}=\dfrac{AK}{AG}\)
Xét ∆ABC và ∆AKG:
A: góc chung
\(\dfrac{AB}{AC}=\dfrac{AK}{AG}\left(cmt\right)\)
=> ∆ABC~∆AKG(c.g.c)
b) Vì H là giao điểm của 2 đường cao BK và CG
=> H là trực tâm ∆ABC
=> AH vuông góc với BC
Gọi giao điểm AH và BC là I.
Xét ∆BHI và ∆BCK:
B: góc chung
\(\widehat{BIH}=\widehat{BKC}=90^o\)
=> ∆BHI~∆BCK(g.g)
=> \(\dfrac{BH}{BI}=\dfrac{BC}{BK}\)
=> BH.BK=BC.BI(1)
Xét ∆CHI và ∆CBG:
C: góc chung
\(\widehat{CIH}=\widehat{CGB}=90^o\)
=> ∆CHI~∆CBG(g.g)
=> \(\dfrac{CH}{CI}=\dfrac{BC}{CG}\)
=> CH.CG=BC.CI(2)
Từ (1) và (2)
suy ra BH.BK+CH.CG=BI.BC+CI.BC=BC(CI+BI)=BC.BC=BC2
Dễ nhưng lười đánh máy:v
a) Xét ∆ABK và ∆ACG:
A: góc chung
\(\widehat{AKB}=\widehat{AGC}=90^o\)
a: Xet ΔCHA vuông tại H và ΔCKB vuông tại K có
góc C chung
=>ΔCHA đồng dạng với ΔCKB
b: Xét ΔCAB có
AH,BK là đừog cao
AH cắt BK tại D
=>D là trực tâm
=>CD vuông góc AB tại E
góc CHA=góc CEA=90 độ
=>CHEA nội tiếp
=>góc BHE=góc BAC
mà góc HBE chung
nên ΔBEH đồng dạng với ΔBAC
c: góc KHD=góc ACE
góc EHA=góc KBA
mà góc ACE=góc KBA
nên góc KHD=góc EHD
=>HA là phân giác của góc EHK
a) Xét ΔABK vuông tại K và ΔACI vuông tại I có
\(\widehat{BAK}\) chung
Do đó: ΔABK∼ΔACI(g-g)
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AI\cdot AB=AK\cdot AC\)(đpcm)
b) Ta có: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(cmt)
nên \(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)
Xét ΔAIK và ΔACB có
\(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)(cmt)
\(\widehat{IAK}\) chung
Do đó: ΔAIK\(\sim\)ΔACB(c-g-c)