Cho hàm số y = f ( x ) = \(\frac{48-3x}{15-x}\)với x là số nguyên , x khác 15 . Giá trị lớn nhất của hàm số f ( x ) đạt được khi x bằng bao nhiêu
Giải gấp dùm mình !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
000000000000000000000000000255555555555555555555555555555555555555555555555555555
Đơn giản là bạn vẽ cái hàm bậc 4 đó ra và cho -m và -m-10 cắt thôi. Vì -m-10<-m nên -m-10 sẽ nằm ở dưới, còn -m nằm trên. Nên -m sẽ cắt 2 điểm và -m-10 cắt 4 điểm cho ta 6 điểm. Ngoài ra k còn trường hợp nào khác mà -m và -m-10 cắt thỏa mãn
Số 2 lớn hơn mọi giá trị khác của hàm số f(x) = sinx với tập xác định D = R nhưng 2 không phải là giá trị lớn nhất của hàm số này (giá trị lớn nhất là 1); vì vậy A sai. Cũng như vậy B sai với f(x) = sinx, D = R, M = 2. Phát biểu C tự mâu thuẫn: vì M = f( x 0 ), x 0 ∈ D nên hay không xảy ra M > f(x), ∀x ∈ D.
Đáp án: D
Bước 1.Đầu tiên phân tích cái tử thành hai số hạng trong đó một số hạng phải có nhân tử giống cái mẫu: 3.(15-x)+3--
bước 2 chia tử cho mẫu: \(y=\frac{3\left(15-x\right)+3}{15-x}=3+\frac{3}{15-x}\)
Bản chất số "3" là thương của cái thừa số phân tích trong bước 1 (3.15-3)/(15-3)=3. "tự nhiên (trừ 3)=>? 3 lấy ở đâu.
Bước 3. giờ đơn giản rồi f(x) là tổng hai số hạng (1 hằng số)=> chỉ xét số hạng chứa x : g(x) =3/(15-x)
bước 4. cần f(x) lớn nhất--> g(x) phải lớn nhất--> g(x) trước hết g(x) phải >0. --> x phải nhỏ hơn 15
bước 5 ; để phân số lớn nhất --> mẫu số phải nhỏ nhất--> 15-x phải nhỏ nhất là một số dương===> 15-x=1=> x=14
Kết luận: f(x)=3+3/(15-14)=6
đầu tiên bạn lấy f(x) ban đầu trừ đi 3 sẽ còn lại là 3/15-x
=> f(x) Max <=> 3/15-x lớn nhất
<=> 15-x nhỏ nhất
=> 15-x=1
=> x= 14
Giải sơ lược do đã muộn nên bạn thông cảm nhé!! Nếu ko hiểu thì hỏi lại mih nha.
\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x-sinx=0\\x-m-3=0\\x-\sqrt{9-m^2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=m+3\\x=\sqrt{9-m^2}\end{matrix}\right.\)
Do hệ số bậc cao nhất của x dương nên:
- Nếu \(m=-3\Rightarrow f'\left(x\right)=0\) có nghiệm bội 3 \(x=0\) \(\Rightarrow x=0\) là cực tiểu (thỏa mãn)
- Nếu \(m=3\Rightarrow x=0\) là nghiệm bội chẵn (không phải cực trị, ktm)
- Nếu \(m=0\Rightarrow x=3\) là nghiệm bội chẵn và \(x=0\) là nghiệm bội lẻ, đồng thời \(x=0\) là cực tiểu (thỏa mãn)
- Nếu \(m\ne0;\pm3\) , từ ĐKXĐ của m \(\Rightarrow-3< m< 3\Rightarrow\left\{{}\begin{matrix}m+3>0\\\sqrt{9-m^2}>0\end{matrix}\right.\)
Khi đó \(f'\left(x\right)=0\) có 3 nghiệm pb trong đó \(x=0\) là nghiệm nhỏ nhất
Từ BBT ta thấy \(x=0\) là cực tiểu
Vậy \(-3\le m< 3\)
cho em hỏi là tại sao m≠0 mà đkxđ của m lại là -3<m<3 ạ ?
\(f\left(x\right)=\frac{48-3x}{15-x}=\frac{3+45-3x}{15-x}=\frac{3+3\left(15-x\right)}{15-x}=3+\frac{3}{15-x}\)
Để \(f\left(x\right)=3+\frac{3}{15-x}\) đạt GTLN <=> \(\frac{3}{15-x}\) đạt GTLN
=> 15 - x là số nguyên dương nhỏ nhất => 15 - x = 1 => x = 14
\(\Rightarrow f\left(x\right)_{min}=\frac{48-3.14}{15-14}=\frac{6}{1}=6\)
Vậy GTNN của f(x) là 6 tại x = 14