K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

VỚI A>B SUY RA A/B >1 => (A+N)B=AB+BN>AB+AN=A(B+N)=>A+N/B+N > A/B

VỚI A<B TƯƠNG TỰ SUY RA A+N/B+N < A/B 

VỚI A=B SUY RA A+N/B+N = A/B

8 tháng 7 2016

Ta có:

\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b^2+bn}\)

\(\frac{a+n}{b+n}=\frac{\left(a+n\right)b}{\left(b+n\right)b}=\frac{ab+bn}{b^2+bn}\)

TH1 : a < b ; ta có :

\(ab+an< ab+bn\)

\(\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\)

TH2: a > b ta có:

\(ab+an>ab+bn\)

\(\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\)

Với \(a=b\) thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

8 tháng 7 2016

http://olm.vn/hoi-dap/question/100062.html

8 tháng 7 2016

 ko vào đc bạn ơi

31 tháng 3 2017

Vì a<b => \(\frac{a+n}{b+n}>\frac{a}{b}\)

31 tháng 3 2017

Rõ hơn đi bạn 

27 tháng 2 2016

3.

A:

20032003+1=20032002.2003+1=20032002+1

20032004+1=20032002.2003.2003+1=20032002.2003+1(loại số 2003 thứ hai của cả mẫu số và tử số)  

B:

20032002+1=20032002+1

20032003+1=20032002.2003+1

Suy ra: A=B

7 tháng 6 2017

Xét 3 trường hợp \(\frac{a}{b}=1,\frac{a}{b}>1,\frac{a}{b}< 1\)

TH1: \(\frac{a}{b}=1\)

=> a = b

=> an = bn

=> ab + an = ab + bn

=> a(b + n) = b(a + n)

=> \(\frac{a}{b}=\frac{a+n}{b+n}\)

TH2: \(\frac{a}{b}>1\)

=> a > b

=> an > bn

=> ab + an > ab + bn

=> a(b + n) > b(a + n)

=> \(\frac{a}{b}>\frac{a+n}{b+n}\)

TH3: \(\frac{a}{b}< 1\)

=> a < b

=> an < bn

=> ab + an < ab + bn

=> a(b + n) < b(a + n)

=> \(\frac{a}{b}< \frac{a+n}{b+n}\)

HQ
Hà Quang Minh
Giáo viên
4 tháng 8 2023

\(\left(a+b\right)^2=a^2+b^2+2ab\)

Mà \(a,b\in\) N*

⇒2ab>0

\(a^2+b^2+2ab>a^2+b^2\)

4 tháng 8 2023

giúp em với ạ !!

 

15 tháng 9 2017

mik ko biết làm nhưng bạn có thể vào câu hỏi tương tự

11 tháng 7 2019

Ta có : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a(b+n)< b(a+n)\)

\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\)vì n > 0

Như vậy : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)

Ta lại có : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a(b+n)>b(a+n)\)

\(\Leftrightarrow ab+an>ab+bn\Leftrightarrow an>bn\Leftrightarrow a>b\)

Như vậy : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)