\(M_{MIN}=x+\sqrt{x+2016}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\sqrt{\left(x-2016\right)^2}+\sqrt{\left(x-1\right)^2}\)
\(=\left|x-2016\right|+\left|x-1\right|\)
\(=\left|x-2016\right|+\left|1-x\right|\ge\left|\left(x-2016\right)+\left(1-x\right)\right|=2015\)
(Dấu "="\(\Leftrightarrow\left(x-2016\right)\left(1-x\right)\ge0\)
\(TH1:\hept{\begin{cases}x-2016\ge0\\1-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2016\\x\le1\end{cases}}\left(L\right)\)
\(TH2:\hept{\begin{cases}x-2016\le0\\1-x\le0\end{cases}}\Leftrightarrow1\le x\le2016\))
Vậy \(E_{min}=2015\Leftrightarrow1\le x\le2016\)
Áp dụng BĐT |a|+|b|\(\ge\)|a+b| ta có:
\(E=\sqrt{\left(x-2016\right)^2}+\sqrt{\left(x-1\right)^2}\)
\(=\left|x-2016\right|+\left|x-1\right|\)
\(=\left|x-2016\right|+\left|-\left(x-1\right)\right|\)
\(=\left|x-2016\right|+\left|-x+1\right|\)
\(\ge\left|x-2016+\left(-x\right)+1\right|=2015\)
Xảy ra khi \(1\le x\le2016\)
min mình có ra rồi. nhưng chỉ không biết là khi x=y hay x,y bằng bao nhiêu thôi.
\(\sqrt{x\left(x+3y\right)}\ge\frac{x+x+3y}{2}=\frac{2x+3y}{2}\)
\(\sqrt{y\left(y+3x\right)}\le\frac{y+y+3x}{2}=\frac{2y+3x}{2}\)
\(\Rightarrow\sqrt{x\left(x+3y\right)}+\sqrt{y\left(y+3x\right)}\le\frac{5}{2}\left(x+y\right)\)
=> \(A\ge2016\left(x+y\right):\frac{5}{2}\left(x+y\right)=\frac{2016\cdot2\left(x+y\right)}{5\left(x+y\right)}=\frac{4032}{5}\)
nhưng không biết x,y bằng bao nhiêu. ai làm đc ghi hẳn cách giải ra nha
... mẫu \(\le\sqrt{\left(\sqrt{x}^2+\sqrt{y}^2\right)\left(\sqrt{x+3y}^2+\sqrt{y+3x}^2\right)}\)=2(x+y)
=>A\(\ge\)(2016(x+y))/(2(x+y) =1008
=> Min A = 1008. Dấu x xảy ra <=> x=y
\(a)\) \(M_{\left(3\right)}=3+3^2+3^3+...+3^{2016}\)
\(3M_{\left(3\right)}=3^2+3^3+3^4+...+3^{2017}\)
\(3M_{\left(3\right)}-M_{\left(3\right)}=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)
\(2M_{\left(3\right)}=3^{2017}-3\)
\(M_{\left(3\right)}=\frac{3^{2017}-3}{2}\)
Vậy \(M_{\left(3\right)}=\frac{3^{2017}-3}{2}\)
\(M_{\left(-3\right)}=\left(-3\right)+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2016}\)
\(\left(-3\right)M_{\left(-3\right)}=\left(-3\right)^2+\left(-3\right)^3+\left(-3\right)^4+...+\left(-3\right)^{2017}\)
\(\left(-3\right)M_{\left(-3\right)}-M_{\left(-3\right)}=\left[\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2017}\right]-\left[\left(-3\right)+\left(-3\right)^2+...+\left(-3\right)^{2016}\right]\)\(\left(-4\right)M_{\left(-3\right)}=\left(-3\right)^{2017}+3\)
\(M_{\left(-3\right)}=\frac{\left(-3\right)^{2017}+3}{-4}\)
\(M_{\left(-3\right)}=\frac{-\left(3^{2017}-3\right)}{-4}\)
\(M_{\left(-3\right)}=\frac{3^{2017}-3}{4}\)
Vậy \(M_{\left(-3\right)}=\frac{3^{2017}-3}{4}\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(M_{\left(2\right)}=2+2^2+2^3+...+2^{2016}\)
\(M_{\left(2\right)}=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(M_{\left(2\right)}=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)
\(M_{\left(2\right)}=2.7+2^4.7+...+2^{2014}.7\)
\(M_{\left(2\right)}=7\left(2+2^4+...+2^{2014}\right)⋮7\) \(\left(1\right)\)
Lại có :
\(M_{\left(2\right)}=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2013}+2^{2014}+2^{2015}+2^{2016}\right)\)
\(M_{\left(2\right)}=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{2013}\left(1+2+2^2+2^3\right)\)
\(M_{\left(2\right)}=2.15+2^5.15+...+2^{2013}.15\)
\(M_{\left(2\right)}=15\left(2+2^5+...+2^{2013}\right)⋮15\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(M_{\left(2\right)}\) chia hết cho \(7\) và \(15\)
\(\Rightarrow\)\(M_{\left(2\right)}⋮105\) ( vì \(7.15=105\) )
Vậy nếu \(M⋮105\)\(\Leftrightarrow\)\(x=2\)
Chúc bạn học tốt ~
Áp dụng BĐT bunyakovsky:
\(\sum\dfrac{x^2}{y+z}\ge\sum\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+y^2}=a\\\sqrt{y^2+z^2}=b\\\sqrt{z^2+x^2}=c\end{matrix}\right.\) thì có a+b+c=2016 và cần tìm Min của \(\sum\dfrac{a^2+c^2-b^2}{2\sqrt{2}b}\) (\(x^2=\dfrac{a^2+c^2-b^2}{2}\))
Ta có: \(\sum\dfrac{a^2+c^2-b^2}{2\sqrt{2}b}=\dfrac{1}{2\sqrt{2}}.\left(\sum_{sym}\dfrac{a^2}{b}-\sum b\right)\)
Áp dụng BĐT cauchy-schwarz:
\(\sum_{sym}\dfrac{a^2}{b}=\dfrac{a^2}{b}+\dfrac{c^2}{b}+\dfrac{b^2}{a}+\dfrac{c^2}{a}+\dfrac{a^2}{c}+\dfrac{b^2}{c}\ge\dfrac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}=2\left(a+b+c\right)\)
DO đó \(VT\ge\dfrac{1}{2\sqrt{2}}\left(2\sum a-\sum a\right)=\dfrac{1}{2\sqrt{2}}\left(a+b+c\right)=\dfrac{2016}{2\sqrt{2}}=\dfrac{1008}{\sqrt{2}}\)
Dấu = xảy ra khi a=b=c hay \(x=y=z=\dfrac{672}{\sqrt{2}}\)
Đặt \(\sqrt{x+2016}=y\ge0\)\(\Rightarrow y^2=x+2016\)\(\Rightarrow x=y^2-2016\)
\(\Rightarrow M=y^2-2016+y\)\(=y^2+2.\frac{1}{2}.y+\frac{1}{4}-\frac{8065}{4}=\left(y+\frac{1}{2}\right)^2-\frac{8065}{4}\ge\)\(\left(\frac{1}{2}\right)^2-\frac{8065}{4}=-2016\)\(\forall y\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x+2016}=y=0\Leftrightarrow\)\(x+2016=0\Leftrightarrow x=-2016\)
Vậy ...