\(\left(\sqrt{\dfrac{1}{4}-1,2}\right):1\dfrac{1}{20}-\left(-\dfrac{5}{2}\right)^2+\left|1,25-\dfrac{3}{4}\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\dfrac{1}{2}-\dfrac{6}{5}\right):\dfrac{21}{20}-\dfrac{25}{4}+\dfrac{1}{2}\)
\(=\dfrac{-7}{10}\cdot\dfrac{20}{21}-\dfrac{25}{4}+\dfrac{2}{4}\)
\(=\dfrac{-2}{3}-\dfrac{23}{4}=\dfrac{-8-69}{12}=\dfrac{-77}{12}\)
\(\left(\sqrt{\dfrac{1}{4}}-1,2\right):1\dfrac{1}{20}-\left(-\dfrac{5}{2}\right)^2+\left|1,25-\dfrac{3}{4}\right|\)
\(=-\dfrac{7}{10}:\dfrac{21}{20}-\dfrac{25}{4}+\left|\dfrac{1}{2}\right|\)
\(=-\dfrac{7}{10}.\dfrac{20}{21}-\dfrac{25}{4}+\dfrac{1}{2}\)
\(=-\dfrac{2}{3}-\dfrac{25}{4}+\dfrac{1}{2}\)
\(=-\dfrac{77}{12}\)
g: \(=\left(-\sqrt{5}-2\right)\left(\sqrt{5}-2\right)\)
=-(căn 5+2)(căn 5-2)
=-(5-4)=-1
h: \(=\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\dfrac{\sqrt{30}}{3}\right)\left(\dfrac{\sqrt{30}}{5}+\sqrt{2}-\dfrac{4}{5}\sqrt{5}\right)\)
=4/5*căn 10+4/3*căn 6-16/15*căn 15+2/5*căn 15+2-4/5*căn 10+30/15+2/3*căn 15-4/3*căn 6
=4
a: Ta có: \(\left(4\sqrt{2}-\dfrac{11}{2}\sqrt{8}-\dfrac{1}{3}\sqrt{288}+\sqrt{50}\right)\cdot\left(\dfrac{1}{2}\sqrt{2}\right)\)
\(=\dfrac{1}{2}\sqrt{2}\cdot\left(4\sqrt{2}-11\sqrt{2}-4\sqrt{2}+5\sqrt{2}\right)\)
\(=\dfrac{1}{2}\sqrt{2}\cdot6\sqrt{2}=3\)
Tính hợp lí nếu có thể:
a,\(\left(1,2-\sqrt{\dfrac{1}{4}}\right):1\dfrac{1}{20}+\left|\dfrac{3}{4}-1,25\right|-\left(-\dfrac{3}{2}\right)^2\)
\(=\left(\dfrac{12}{10}-\dfrac{1}{2}\right):\dfrac{21}{20}+\left|\dfrac{3}{4}-\dfrac{5}{4}\right|-\dfrac{9}{4}\)
\(=\dfrac{7}{10}\cdot\dfrac{20}{21}+\left|-\dfrac{1}{2}\right|-\dfrac{9}{4}\)
\(=\dfrac{2}{3}+\dfrac{1}{2}-\dfrac{9}{4}=\dfrac{8+6-27}{12}=-\dfrac{13}{12}\)
Bài 2:
a: \(=\sqrt{2}-\dfrac{2}{5}\sqrt{2}+2\sqrt{2}+2\sqrt{2}=\dfrac{23}{5}\sqrt{2}\)
\(\dfrac{\dfrac{4}{5}:\left(\dfrac{4}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\left(\dfrac{27}{25}-\dfrac{2}{25}\right):\dfrac{4}{7}}{\left(\dfrac{59}{9}-\dfrac{13}{4}\right)\cdot\dfrac{36}{17}}+\left(\dfrac{6}{5}\cdot\dfrac{1}{2}\right):\dfrac{4}{5}\)
\(=\dfrac{4}{5}:\dfrac{3}{5}+\dfrac{7}{4}:7+\dfrac{3}{5}:\dfrac{4}{5}\)
\(=\dfrac{4}{3}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\dfrac{7}{3}\)
\(A=4.\dfrac{25}{16}+25.\left[\dfrac{9}{16}:\dfrac{125}{64}\right]:\dfrac{-27}{8}\)
\(=\dfrac{25}{16}+25.\dfrac{36}{125}:\dfrac{-27}{8}=-\dfrac{137}{240}\left(1\right)\)
\(B=125.\left[\dfrac{1}{25}+\dfrac{1}{64}:8\right]-64.\dfrac{1}{64}\)
\(=125.\dfrac{89}{1600}:8-64.\dfrac{1}{64}=\dfrac{-67}{512}\left(2\right)\)
Vì (2) > (1) => B > A
\(=\left(\dfrac{1}{2}-\dfrac{6}{5}\right):\dfrac{21}{20}-\dfrac{25}{4}+\dfrac{1}{2}=\dfrac{-7}{10}\cdot\dfrac{20}{21}-\dfrac{23}{4}\)
\(=\dfrac{-2}{3}-\dfrac{23}{4}=\dfrac{-8-69}{12}=-\dfrac{77}{12}\)