K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

a: M đối xứng N qua AB

nên AM=AN; BM=BN

mà MA=MB

nên MA=MB=AN=BN

=>AMBN là hình thoi

b: Xét tứ giác ACMN có

AN//CM

AN=CM

Do đó: ACMN là hình bình hành

=>AM cắt CN tại trung điểm của mỗi dường

=>N,I,C thẳng hàng

c: BC=2*AM=10cm

=>AB=8cm

\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

26 tháng 12 2021

A.

I là trung điểm của AB

I là trung điểm của MN (M đối xứng N qua I)

=> AMBN là hình bình hành

mà AM = MB (AM là đường trung tuyến của tam giác ABC vuông tại A)

=> AMBN là hình thoi

B.

Tam giác ABC vuông tại A có:

BC2 = AB2 + AC(định lý Pytago)

= 122 + 162

= 144 + 256

= 400 (cm)

BC = √400400 = 20 (cm)

mà AM = 1212BC = 20 : 2 = 10 (cm) (AM là đường trung tuyến của tam giác ABC vuông tại A)

AN = MB (AMBN là hình thoi)

mà MB = MC (M là trung điểm của BC)

=> AN = MC

mà AN // MC (AMBN là hình thoi)

=> ACMN là hình bình hành

=> MN = AC

mà AC = 16 (cm)

=> MN = 16 (cm)

a: Gọi giao điểm của AB và DM là K

Ta có: D đối xứng M qua AB

=>AB là đường trung trực của MD

=>AB\(\perp\)MD tại K và K là trung điểm của MD

Ta có: MK\(\perp\)AB

AC\(\perp\)AB

Do đó: MK//AC

Xét ΔABC có

M là trung điểm của BC

MK//AC

Do đó: K là trung điểm của AB

Xét tứ giác AMBD có

K là trung điểm chung của AB và MD

=>AMBD là hình bình hành

Hình bình hành AMBD có AB\(\perp\)MD

nên AMBD là hình thoi

b: Xét ΔABC có

M,K lần lượt là trung điểm của BC,BA

=>MK là đường trung bình của ΔABC

=>MK//AC và \(MK=\dfrac{AC}{2}\)

Ta có: \(MK=\dfrac{AC}{2}\)

\(MK=\dfrac{MD}{2}\)

Do đó: AC=MD

mà AC=AE

nên MD=AE

Xét tứ giác AMDE có

DM//AE

DM=AE

Do đó: AMDE là hình bình hành

=>DE//AM

Ta có: DE//AM

BD//AM

DE,BD có điểm chung là D

Do đó: D,B,E thẳng hàng

 

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

24 tháng 11 2021

QDSHYFT