K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2017

Ta có : (x - 3)2016 \(\ge0\left(\forall x\right)\)

           (y - 4)2018 \(\ge0\left(\forall x\right)\)

Mà (x - 3)2016 +  (y - 4)2018 = 0

Suy ra : \(\hept{\begin{cases}\left(x-3\right)^{2016}=0\\\left(y-4\right)^{2018}=0\end{cases}}\)

<=>     \(\hept{\begin{cases}x-3=0\Rightarrow x=3\\y-4=0\Rightarrow y=4\end{cases}}\)

27 tháng 2 2017

thank you

26 tháng 10 2016

a) \(A=\left|x-2016\right|+2017\)

Vì: \(\left|x-2016\right|\ge0\)

=> \(\left|x-2016\right|+2017\ge2017\)

Vậy GTNN của A lòa 2017 khi\(x-2016=0\Leftrightarrow x=2016\)

b) \(\left|x-2016\right|+\left|y-2017\right|+2018\)

Vì: \(\begin{cases}\left|x-2016\right|\ge0\\\left|x-2017\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x-2016\right|+\left|x-2017\right|\ge0\)

=> \(\left|x-2016\right|+\left|y-2017\right|+2018\ge2018\)

Vậy GTNN của B là 2018 khi \(\begin{cases}x-2016=0\\y-2017=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2016\\y=2017\end{cases}\)

28 tháng 10 2016

a)Ta có: |x-2016|\(\ge\) 0

=>|x-2016|+2017 \(\ge\) 2017

hay A \(\ge\) 2017

GTNN của A = 2017 khi |x-2016|=0

=>x-2016=0

=>x=0+2016

=>x=2016

Vậy GTNN của A=2017 khi x=2016

b)Tương tự câu a)

26 tháng 10 2016

a) Ta có: |x-2016| luôn lớn hơn hoặc bằng 0

=>|x-2016| + 2017 luôn lớn hơn hoặc bằng 2017

Dấu bằng xảy ra khi |x-2016|=0

=> x-2016=0

=>x=2016

vậy GTNN của A bằng 2017 khi x=2016

b)Ta có |x-2016| + |y-2017| luôn lớn hơn hoặc bằng 0

=>|x-2016|+|y-2-17| + 2018 luôn lớn hơn hoặc bằng 2018

Dấu bằng xảy ra khi

\(\left[\begin{array}{nghiempt}x-1016=0\\y-1017=0\end{cases}=\left[\begin{array}{nghiempt}x=2016\\y=2017\end{array}\right.}\)

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

3 tháng 3 2020

Ta có : \(\left(x-y\right)^{2018}=\left(x-y\right)^{2016}\)

\(\Leftrightarrow\left(x-y\right)^{2018}-\left(x-y\right)^{2016}=0\)

\(\Leftrightarrow\left(x-y\right)^{2016}\left[\left(x-y\right)^2-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-y\right)^{2016}=0\left(1\right)\\\left(x-y\right)^2-1=0\left(2\right)\end{cases}}\)

+) Từ (1) \(\Rightarrow x-y=0\) kết hợp với giả thiết : \(x+y=0\)

\(\Rightarrow x=y=0\)

+) Từ (2) \(\Rightarrow\orbr{\begin{cases}x-y=1\\x-y=-1\end{cases}}\)

*) Với \(x-y=1\) kết hợp với giả thiết \(x+y=0\)

\(\Rightarrow y=-\frac{1}{2},x=\frac{1}{2}\)

*) Với \(x-y=-1\) kết hợp với giả thiết \(x+y=0\)

\(\Rightarrow y=\frac{1}{2},x=-\frac{1}{2}\)

Vậy : \(\left(x,y\right)\in\left\{\left(0,0\right);\left(\frac{1}{2},-\frac{1}{2}\right);\left(-\frac{1}{2},\frac{1}{2}\right)\right\}\)

3 tháng 3 2020

Thanks Lê Danh Vinh

14 tháng 12 2016

\(\left(x-\frac{1}{5}\right)^{2014}+\left(y+0,4\right)^{2016}+\left(z-3\right)^{2018}=0\)

Ta thấy: \(\begin{cases}\left(x-\frac{1}{5}\right)^{2014}\ge0\\\left(y+0,4\right)^{2016}\ge0\\\left(z-3\right)^{2018}\ge0\end{cases}\)

\(\Rightarrow\left(x-\frac{1}{5}\right)^{2014}+\left(y+0,4\right)^{2016}+\left(z-3\right)^{2018}\ge0\)

\(\Rightarrow\begin{cases}\left(x-\frac{1}{5}\right)^{2014}=0\\\left(y+0,4\right)^{2016}=0\\\left(z-3\right)^{2018}=0\end{cases}\)\(\Rightarrow\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{1}{5}\\y=-0,4\\z=3\end{cases}\)

 

14 tháng 12 2016

lần sau viết đề cẩn thận hơn nhé