K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2022

a: \(A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{x-1}=\dfrac{2x-3\sqrt{x}+1}{x-1}\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

b: Để A nguyên thì \(2\sqrt{x}+2-3⋮\sqrt{x}+1\)

=>\(\sqrt{x}+1\in\left\{1;3\right\}\)

=>x=0 hoặc x=4

c: Để A<1 thì A-1<0

=>\(\dfrac{2\sqrt{x}-1-\sqrt{x}-1}{\sqrt{x}+1}< 0\)

=>căn x-2<0

=>0<=x<4

17 tháng 12 2022

a: \(A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{x-1}=\dfrac{2x-3\sqrt{x}+1}{x-1}\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

b: Để A nguyên thì \(2\sqrt{x}+2-3⋮\sqrt{x}+1\)

=>\(\sqrt{x}+1\in\left\{1;3\right\}\)

=>x=0 hoặc x=4

c: Để A<1 thì A-1<0

=>\(\dfrac{2\sqrt{x}-1-\sqrt{x}-1}{\sqrt{x}+1}< 0\)

=>căn x-2<0

=>0<=x<4

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)

\(A=\left(\dfrac{1}{x-4}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}}\)

\(=\left(\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)

\(=\dfrac{1+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

b: Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2+2⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\inƯ\left(2\right)\)

=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)

=>\(\sqrt{x}\in\left\{3;1;4;0\right\}\)

=>\(x\in\left\{9;1;16;0\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{9;16\right\}\)

c: A<0

=>\(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 0\)

=>\(\sqrt{x}-2< 0\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

Kết hợp ĐKXĐ, ta được: 0<x<4 và x<>1

18 tháng 12 2021

a, ĐK: \(x\ge0,x\ne1\)

\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{x-1}\)

\(=\dfrac{x+1+2\sqrt{x}+x+1-2\sqrt{x}-3\sqrt{x}-1}{x-1}\)

\(=\dfrac{2x-3\sqrt{x}+1}{x-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

18 tháng 12 2021

b, \(x=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

Khi đó: 

\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\dfrac{2\left(\sqrt{3}-1\right)-1}{\left(\sqrt{3}-1\right)+1}\)

\(=\dfrac{2\sqrt{3}-3}{\sqrt{3}}\)

\(=2-\sqrt{3}\)

15 tháng 7 2023

(a) Với \(x\ge0,x\ne9\), ta có: \(A=\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{3}{\sqrt{x}+3}.\)

(b) Ta có: \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

\(\Rightarrow\sqrt{x}=2+\sqrt{3}\).

Thay vào biểu thức \(A\) (thỏa mãn điều kiện), ta được: \(A=\dfrac{3}{2+\sqrt{3}+3}=\dfrac{3}{5+\sqrt{3}}\)

\(=\dfrac{3\left(5-\sqrt{3}\right)}{5^2-\left(\sqrt{3}\right)^2}=\dfrac{15-3\sqrt{3}}{22}.\)

(c) Để \(A=\dfrac{3}{5}\Rightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{3}{5}\)

\(\Rightarrow\sqrt{x}+2=5\Leftrightarrow x=9\) (không thỏa mãn).

Vậy: \(x\in\varnothing.\)

(d) Để \(A>1\Leftrightarrow A-1>0\Rightarrow\dfrac{3}{\sqrt{x}+3}-1>0\)

\(\Leftrightarrow\dfrac{1-\sqrt{x}}{\sqrt{x}+3}>0\Rightarrow1-\sqrt{x}>0\) (do \(\sqrt{x}+3>0\forall x\inĐKXĐ\))

\(\Rightarrow x< 1\). Kết hợp với điều kiện thì \(0\le x< 1.\)

(e) \(A\in Z\Rightarrow\dfrac{3}{\sqrt{x}+3}\in Z\Rightarrow\left(\sqrt{x}+3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+3=1\\\sqrt{x}+3=-1\\\sqrt{x}+3=3\\\sqrt{x}+3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-2\left(VL\right)\\\sqrt{x}=-4\left(VL\right)\\\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\\\sqrt{x}=-6\left(VL\right)\end{matrix}\right.\)

Vậy: \(x=0.\)

AH
Akai Haruma
Giáo viên
12 tháng 6 2021

Lời giải:

ĐKXĐ: $x\geq 0; x\neq 1$

a)

\(A=\frac{x+\sqrt{x}+1}{x+1}:\left[\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{(\sqrt{x}-1)(x+1)}\right]\)

\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{x+1-2\sqrt{x}}{(\sqrt{x}-1)(x+1)}=\frac{x+\sqrt{x}+1}{x+1}.\frac{(\sqrt{x}-1)(x+1)}{(\sqrt{x}-1)^2}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)

b) 

\(A=7\Leftrightarrow x+\sqrt{x}+1=7(\sqrt{x}-1)\)

\(\Leftrightarrow x-6\sqrt{x}+8=0\Leftrightarrow (\sqrt{x}-2)(\sqrt{x}-4)=0\)

\(\Leftrightarrow \left[\begin{matrix} x=4\\ x=16\end{matrix}\right.\) (đều thỏa mãn)

c) 

\(x=2(2+\sqrt{3})=4+2\sqrt{3}=3+1+2\sqrt{3.1}=(\sqrt{3}+1)^2\Rightarrow \sqrt{x}=\sqrt{3}+1\)

\(\Rightarrow A=\frac{4+2\sqrt{3}+\sqrt{3}+1+1}{\sqrt{3}}=\frac{6+3\sqrt{3}}{\sqrt{3}}=3+2\sqrt{3}\)

d)

\(A< 1\Leftrightarrow \frac{x+\sqrt{x}+1}{\sqrt{x}-1}-1<0\Leftrightarrow \frac{x-2\sqrt{x}+2}{\sqrt{x}-1}<0\)

\(\Leftrightarrow \frac{(\sqrt{x}-1)^2+1}{\sqrt{x}-1}<0\Leftrightarrow \sqrt{x}-1< 0\Leftrightarrow 0\leq x< 1\)

11 tháng 10 2023

\(a,A=\left(\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}-3\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\left(đk:x\ge0;x\ne1\right)\)

\(=\left[\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\dfrac{3x+3\sqrt{x}-\sqrt{x}+1-3\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\dfrac{3x+2\sqrt{x}+1-3x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2}{\sqrt{x}-1}\)

\(---\)

\(b,A< 0\Leftrightarrow\dfrac{2}{\sqrt{x}-1}< 0\)

\(\Leftrightarrow\sqrt{x}-1< 0\)

\(\Leftrightarrow\sqrt{x}< 1\)

\(\Leftrightarrow x< 1\)

Kết hợp với điều kiện của \(x\), ta được:

\(0\le x< 1\)

Vậy: ...

\(Toru\)

11 tháng 10 2023

a) \(A=\left(\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}-3\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\left[\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\dfrac{3x+3\sqrt{x}-\sqrt{x}+1-3x+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\dfrac{2}{\sqrt{x}-1}\)

b) \(A< 0\) khi

\(\dfrac{2}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\)

\(\Leftrightarrow\sqrt{x}< 1\)

\(\Leftrightarrow x< 1\)

Kết hợp với đk:

\(0\le x< 1\)

a: \(A=\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(x-\sqrt{x}+1-\sqrt{x}\right)\)

\(=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)

b: A=3

=>căn x-1=3

=>căn x=4

=>x=16

c: A<=5

=>căn x-1<=5

=>căn x<=6

=>0<=x<=36

=>\(x\in\left\{0;2;3;4;...;36\right\}\)

a: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{3}\)

\(=\dfrac{2}{\sqrt{x}+3}\)

b: Để \(A>\dfrac{1}{3}\) thì \(A-\dfrac{1}{3}>0\)

\(\Leftrightarrow\dfrac{6-\sqrt{x}-3}{3\left(\sqrt{x}+3\right)}>0\)

\(\Leftrightarrow3-\sqrt{x}>0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(0\le x< 9\)

30 tháng 8 2021

a) \(A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}\left(đk:x\ge0,x\ne0\right)\)

\(=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{3}=\dfrac{2}{\sqrt{x}+3}\)

b) \(A>\dfrac{1}{3}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}>\dfrac{1}{3}\)

\(\Leftrightarrow6>\sqrt{x}+3\Leftrightarrow\sqrt{x}< 3\Leftrightarrow0\le x< 9\)