Từ điểm A ở ngoài đường tròn tâm O bán kính R kẻ 2 tiếp tuyến AB, AC( với B, C là hai tiếp điểm. Gọi H là giao điểm của OA và BC.
Chứng minh OA vuông góc với BC và tính tích OH . OA theo R
Kẻ đường kính BD của đường tròn tâm O. Chứng minh CD song song OA
Gọi E là hình chiếu của C trên BD. K là giao điểm của AD và CE. Chứng minh K là trung điểm của CE
a: Xét (O) có
AB,AC là các tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC tại H
Xét ΔOBA vuông tại B có BH là đường cao
nên OH*OA=OB^2=R^2
b: Xét (O) co
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>CD//OA