K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: |x+1|+(2y-1)^2=3

mà x,y nguyên

nên (2y-1)^2=1 và |x+1|=2

=>\(\left\{{}\begin{matrix}x+1\in\left\{2;-2\right\}\\2y-1\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;-3\right\}\\y\in\left\{1;0\right\}\end{matrix}\right.\)

c: |3x-1|+|2y-5|=3

Th1: |3x-1|=0 và |2y-5|=3 

=>3x-1=0 và 2y-5 thuộc {3;-3}

=>y thuộc {4;1}(nhận) và x=1/3(loại)

TH2: |3x-1|=1 và |2y-5|=2

=>3x-1 thuộc {1;-1} và 2y-5 thuộc {2;-2}

=>x thuộc {2/3;0} và y thuộc {7/2;3/2}

=>Loại

TH3: |3x-1|=2 và |2y-5|=1

=>3x-1 thuộc {2;-2} và 2y-5 thuộc {1;-1}

=>x=3 và y thuộc {3;2}

TH4: |3x-1|=3 và |2y-5|=0

=>3x-1 thuộc {3;-3} và 2y-5=0

=>y=5/2(loại)

d: |2x+1|+|y-5|=0

=>2x+1=0 và y-5=0

=>y=5(nhận) và x=-1/2(loại)

=>Ko có cặp số (x,y) nào thỏa mãn

20 tháng 1 2018

a , |2x+4|+|y-6|=0

=> 2 x + 4 = 0 => x = 0 

=> y - 6 = 0 => y = 6

Vậy x = 0 và y = 6

20 tháng 1 2018

a. 2x+4= 2.0+4=4
y-6=2-6=-4

=)) l4l;l-4l

a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)

b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)

23 tháng 2 2022

Thanks

 

Ói , hoa mắt chóng mặt nhức đầu ,

9 tháng 8 2017

sao giống có chữa quá z

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

29 tháng 11 2023

bài 1: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)

\(=\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2-2x-x^2-2x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{4x}{x^2-4}\)

Bài 2:

1: \(x^2y^2-8-1\)

\(=x^2y^2-9\)

\(=\left(xy-3\right)\left(xy+3\right)\)

2: \(x^3y-2x^2y+xy-xy^3\)

\(=xy\cdot x^2-xy\cdot2x+xy\cdot1-xy\cdot y^2\)

\(=xy\left(x^2-2x+1-y^2\right)\)

\(=xy\left[\left(x-1\right)^2-y^2\right]\)

\(=xy\left(x-1-y\right)\left(x-1+y\right)\)

3: \(x^3-2x^2y+xy^2\)

\(=x\cdot x^2-x\cdot2xy+x\cdot y^2\)

\(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)

4: \(x^2+2x-y^2+1\)

\(=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x+1+y\right)\left(x+1-y\right)\)

5: \(x^2+2x-4y^2+1\)

\(=\left(x^2+2x+1\right)-4y^2\)

\(=\left(x+1\right)^2-4y^2\)

\(=\left(x+1-2y\right)\left(x+1+2y\right)\)

6: \(x^2-6x-y^2+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

1/Ghpt\(\left\{{}\begin{matrix}x^2+y^2+x^2y^2=1+2xy\\\left(x-y\right)\left(1+xy\right)=1-xy\end{matrix}\right.\)2/Ghpt\(\left\{{}\begin{matrix}x^2y+y+xy^2+x=18xy\\x^4y^2+y^2+x^2y^4+x^2=208x^2y^2\end{matrix}\right.\)3/Ghpt\(\left\{{}\begin{matrix}\sqrt{x+3}+\sqrt{y+3}=4\\\dfrac{1}{x}+\dfrac{1}{y}=2\end{matrix}\right.\)4/ Cho x,y là nghiệm của hệ phương trình\(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=2m\end{matrix}\right.\)Tìm min và max của A=xy5/cho x,y,z thỏa mãn...
Đọc tiếp

1/Ghpt\(\left\{{}\begin{matrix}x^2+y^2+x^2y^2=1+2xy\\\left(x-y\right)\left(1+xy\right)=1-xy\end{matrix}\right.\)

2/Ghpt\(\left\{{}\begin{matrix}x^2y+y+xy^2+x=18xy\\x^4y^2+y^2+x^2y^4+x^2=208x^2y^2\end{matrix}\right.\)

3/Ghpt\(\left\{{}\begin{matrix}\sqrt{x+3}+\sqrt{y+3}=4\\\dfrac{1}{x}+\dfrac{1}{y}=2\end{matrix}\right.\)

4/ Cho x,y là nghiệm của hệ phương trình

\(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=2m\end{matrix}\right.\)

Tìm min và max của A=xy

5/cho x,y,z thỏa mãn đk

\(\left\{{}\begin{matrix}xy+yz+xz=1\\x^2+y^2+z^2=2\end{matrix}\right.\)

Chứng minh rằng: \(\dfrac{-4}{3}\le x,y,z\le\dfrac{4}{3}\)

6/Ghpt bằng 3 cách\(\left\{{}\begin{matrix}x+y+z=1\\\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)

7/Ghpt\(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)

8/Ghpt\(\left\{{}\begin{matrix}x^2-3y=-2\\y^2-3x=-2\end{matrix}\right.\)

9/Ghpt bằng 2 cách\(\left\{{}\begin{matrix}x+\sqrt{y+3}=3\\y+\sqrt{x+3}=3\end{matrix}\right.\)

10/Ghpt\(\left\{{}\begin{matrix}x+\dfrac{2}{y}=\dfrac{3}{x}\\y+\dfrac{2}{x}=\dfrac{3}{y}\end{matrix}\right.\)

11/Ghpt\(\left\{{}\begin{matrix}\sqrt[3]{3x+5}=y+1\\\sqrt[3]{3y+5}=x+1\end{matrix}\right.\)

12/Ghpt\(\left\{{}\begin{matrix}3x^2y-y^2-2=0\\3y^2x-x^2-2=0\end{matrix}\right.\)

13/Giải các phương trình sau bằng cách đứa về hệ pt đối xứng loại II:

a)\(\left(x^2-3\right)^2-x-3=0\)

b)\(x^2-2=\sqrt{x+2}\)

14/Ghpt:\(\left\{{}\begin{matrix}x^2+y^2+xy=3\\x^2-y^2+xy=1\end{matrix}\right.\)

2
16 tháng 6 2023

loading...  

16 tháng 6 2023

loading...  

11 tháng 1 2022

a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)

Ta có bảng:

x-3-1-515
2y-6-5-151
x2-248
y\(\dfrac{1}{2}\left(loại\right)\)\(\dfrac{5}{2}\left(loại\right)\)\(\dfrac{11}{2}\left(loại\right)\)\(\dfrac{7}{2}\left(loại\right)\)

Vậy không có x,y thỏa mãn đề bài 

b, tương tự câu a

 \(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)

Rồi làm tương tự câu a

\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)

Rồi làm tương tự câu a