K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

Mình khỏi vẽ hình nha

a. Chứng minh tam AMN cân tại A.

Ta có: 

AB=AC (tam giác ABC cân tại A)

BM=NC (gt)

Trừ theo vế, ta được: AB-BM=AC-NC hay AM=AN

Suy ra: tam giác AMN cân tại A

b. Chứng minh MN//BC

Ta có:

Tam giác AMN cân tại A (cmt), nên: \(\widehat{AMN=\frac{180-\widehat{A}}{2}}\)

Tam giác ABC cân tại A (cmt), nên: \(\widehat{ABC=\frac{180-\widehat{A}}{2}}\)

Suy ra: \(\widehat{AMN=\widehat{ABC}}\)

Mà hai góc này ở vị trí đồng vị

Vậy MN//BC

c. Chứng minh AI là phân giác của    góc A

Xét tam giác AIB và tam giác AIC, có:

AB=AC (tam giác ABC cân tại A)

\(\widehat{B}=\widehat{C}\)(tam giác ABC cân tại A)

IB =IC ( gt)

Do đó: tam giác AIB=tam giác AIC (cgc)

Nên: \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)

Vậy AI là phân giác của góc A

d. Chứng minh OM=ON

Xét tam giác AOM và tam giác AON, có:

AM=AN (cmt)

\(\widehat{BAI}=\widehat{CAI}\)(cmt)

AO chung

Do đó: tam giác AOM = tam giác AON (cgc)

Nên: OM=ON

d. Chứng minh A,O,I thẳng hàng

Vì AI là phân giác của góc A (cmt) 

Tương tự AO là phân giác của góc A

Vậy ba điểm A,O,I thẳng hàng

a: Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)

BC chung

Do đó: ΔMBC=ΔNCB

b: ΔMBC=ΔNCB

=>\(\widehat{MCB}=\widehat{NBC}\)

Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)

\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

mà \(\widehat{ABC}=\widehat{ACB};\widehat{CBN}=\widehat{MCB}\)

nên \(\widehat{ABN}=\widehat{ACM}\)

c: AM+MB=AB

AN+NC=AC

mà AB=AC

và MB=NC

nên AM=AN

Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

d: Ta có: \(\widehat{MCB}=\widehat{NBC}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)

nên ΔOBC cân tại O

=>OB=OC

=>O nằm trên đường trung trực của BC(1)

AB=AC

=>A nằm trên đường trung trực của BC(2)

IB=IC

=>I nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,I thẳng hàng

a: Xét ΔANB và ΔAMC có

AN=AM

góc BAN chung

AB=AC

=>ΔANB=ΔAMC

b: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

c: Xét ΔMBC và ΔNCB có

MB=NC

góc MBC=góc NCB

BC chung

=>ΔMBC=ΔNCB

=>góc IBC=góc ICB

=>IB=IC

mà AB=AC

nen AI là trung trực của BC

=>A,I,D thẳng hàng

1: Xét ΔABD và ΔAMD có 

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

6 tháng 12 2021

giúp tui nha

1: Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

12 tháng 1 2023

a)       Xét \(\Delta BACvà\Delta NAMcó\)

                 \(\widehat{BAC}=\widehat{NAM}\) ( đối đỉnh )

                 \(BA=NA\) ( gt )

                  \(CA=MA\) ( gt )

\(\Rightarrow\Delta BAC=\Delta NAM\) ( c.g.c )

\(\Rightarrow BC=MN\) ( 2 cạnh tương ứng )

mik chỉ lm đc v hoi xin lũi bn do chx hiểu cái ý 2 câu a

12 tháng 1 2023

bn chép bài mik ucche

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó:ΔABD=ΔACE

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK; AH=AK

Xét ΔADE có 

AH/AD=AK/AE

nên HK//DE
hay HK//BC

c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)

\(\widehat{OCB}=\widehat{KCE}\)

mà \(\widehat{HBD}=\widehat{KCE}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

a: Xét ΔANB và ΔAMC có

AN=AM

góc A chung

AB=AC

Do đó: ΔANB=ΔAMC

b: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

c: góc ABI+góc IBC=góc ABC

góc ACI+góc ICB=góc ACB

mà góc ABI=góc ACI;góc ABC=góc ACB

nên góc IBC=góc ICB

=>ΔIBC cân tại I

=>I nằm trên trung trực của BC

mà AD là trung trực của BC

nên A,I,D thẳng hàng

a: AM=6-2=6cm

AN=12-3=9cm

=>AM/AB=AN/AC

=>MN//BC

b: Xet ΔAKC có NI//KC

nên NI/KC=AI/AK

Xét ΔABK có MI//BK

nên MI/BK=AI/AK

=>NI/KC=MI/BK

c: NI/KC=MI/BK

KC=KB

=>NI=MI

=>I là tđ của MN