Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔANB và ΔAMC có
AN=AM
góc A chung
AB=AC
Do đó: ΔANB=ΔAMC
b: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: góc ABI+góc IBC=góc ABC
góc ACI+góc ICB=góc ACB
mà góc ABI=góc ACI;góc ABC=góc ACB
nên góc IBC=góc ICB
=>ΔIBC cân tại I
=>I nằm trên trung trực của BC
mà AD là trung trực của BC
nên A,I,D thẳng hàng
a: Xét ΔANB và ΔAMC có
AN=AM
\(\widehat{BAN}\) chung
AB=AC
Do đó: ΔANB=ΔAMC
b: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: Xét ΔMBC và ΔNCB có
MB=NC
MC=NB
BC chung
Do đó: ΔMBC=ΔNCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
=>ΔIBC cân tại I
=>IB=IC
hay I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Ta có: DB=DC
nên D nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,D thẳng hàng
a,Xét tam giác ABN và tam giác ACM có :
AM=AN (gt)
Góc A chung
AB=AC(gt)
=> tam giác ABN = tam giác ACM (c-g-c)
b,theo câu a =>AMC^=ANB^(1)
Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)
Từ 1 và 2 =>MNI^=NMI^(3)
Vì B1^=C1^
B^=C^
=>B^-B1^=C-C1^
=>C2^=B2^(4)
Mặt khác : I1^=I2^(đối đỉnh) (5)
Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )
=> MNI^+NMI^ / 2 = B2^+C2^ / 2
=> B2^=MNI^
Vì 2 góc này ở vị trí sole trong và bằng nhau
=> MN // BC
P/s : Nhờ check hộ ạ =))
a) Xét \(\Delta BACvà\Delta NAMcó\)
\(\widehat{BAC}=\widehat{NAM}\) ( đối đỉnh )
\(BA=NA\) ( gt )
\(CA=MA\) ( gt )
\(\Rightarrow\Delta BAC=\Delta NAM\) ( c.g.c )
\(\Rightarrow BC=MN\) ( 2 cạnh tương ứng )
mik chỉ lm đc v hoi xin lũi bn do chx hiểu cái ý 2 câu a
a,Xét tam giác ABN và tam giác ACM có :
AM=AN (gt)
Góc A chung
AB=AC(gt)
=> tam giác ABN = tam giác ACM (c-g-c)
b,theo câu a =>AMC^=ANB^(1)
Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)
Từ 1 và 2 =>MNI^=NMI^(3)
Vì B1^=C1^
B^=C^
=>B^-B1^=C-C1^
=>C2^=B2^(4)
Mặt khác : I1^=I2^(đối đỉnh) (5)
Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )
=> MNI^+NMI^ / 2 = B2^+C2^ / 2
=> B2^=MNI^
Vì 2 góc này ở vị trí sole trong và bằng nhau
=> MN // BC
Bài làm
a) Xét tam giác AMN có:
AM = AN
=> Tam giác AMN cân tại A.
b) Xét tam giác ABC cân tại A có:
\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\) (1)
Xét tam giác AMN cân tại A có:
\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{B}=\widehat{M}\)
Mà hai góc này ở vị trí đồng vị.
=> MN // BC
c) Xét tam giác ABN và tam giác ACM có:
AN = AM ( gt )
\(\widehat{A}\) chung
AB = AC ( Vì tam giác ABC cân )
=> Tam giác ABN = tam giác ACM ( c.g.c )
=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )
Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )
\(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )
=> \(\widehat{IBC}=\widehat{ICB}\)
=> Tam giác BIC cân tại I
Vì MN // BC
=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )
\(\widehat{NMI}=\widehat{ICB}\)( so le trong )
Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )
=> \(\widehat{MNI}=\widehat{NMI}\)
=> Tam giác MIN cân tại I
d) Xét tam giác cân AMN có:
E là trung điểm của MN
=> AE là trung tuyến
=> AE là đường trung trực.
=> \(\widehat{AEN}=90^0\) (1)
Xét tam giác cân MNI có:
E là trung điểm MN
=> IE là đường trung tuyến
=> IE là trung trực.
=> \(\widehat{IEN}=90^0\) (2)
Cộng (1) và (2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng. (3)
Xét tam giác cân BIC có:
F là trung điểm BC
=> IF là trung tuyến
=> IF là trung trực.
=> \(\widehat{IFC}=90^0\)
Và MN // BC
Mà \(\widehat{IFC}=90^0\)
=> \(\widehat{IEN}=90^0\)
=> E,I,F thẳng hàng. (4)
Từ (3) và (4) => A,E,I,F thẳng hàng. ( đpcm )
# Học tốt #
a.Xét tam giác ABE và tam giác ACD, có:
\(\widehat{A}:chung\)
AD = AE ( gt )
AB = AC ( ABC cân )
Vậy tam giác ABE = tam giác ACD ( c.g.c )
b.Xét tam giác DBC và tam giác ECB, có:
BD = CE ( AB=AC; AD=AE )
góc B = góc C ( ABC cân )
BC: cạnh chung
Vậy tam giác DBC = tam giác ECB ( c.g.c )
=> góc DCB = góc EBC ( 2 góc tương ứng )
=> Tam giác KBC là tam giác cân và cân tại K
c.Xét tam giác AKB và tam giác AKC có:
AB=AC ( ABC cân )
góc ABK = góc ACK ( góc B = góc C; góc KBC = góc KCB )
AK: cạnh chung
Vậy tam giác AKB = tam giác AKC ( c.g.c )
=> góc BAK = góc CAK ( 2 góc tương ứng )
Mà Tam giác ADE cân tại A ( AD=AE )
=> AK là đường cao
=> AK vuông DE (1)
Mà Tam giác KBC cân tại K
=> AK vuông với BC (2)
Từ (1) và (2) => DE//BC
d. Ta có: AK là đường cao ( cmt ) cũng là đường trung tuyến
Mà M là trung điểm BC
=> A,K,M thẳng hàng
a: Xét ΔANB và ΔAMC có
AN=AM
góc BAN chung
AB=AC
=>ΔANB=ΔAMC
b: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: Xét ΔMBC và ΔNCB có
MB=NC
góc MBC=góc NCB
BC chung
=>ΔMBC=ΔNCB
=>góc IBC=góc ICB
=>IB=IC
mà AB=AC
nen AI là trung trực của BC
=>A,I,D thẳng hàng