K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

\(\frac{n^2-2n^2+3}{n-2}\)=\(\frac{n^2-3}{n-2}\)=\(\frac{2^2-4+7}{n-2}\)=\(\frac{\left(n-2\right)^2+7}{n-2}\)=\(\frac{\left(n-2\right)^2}{n-2}\)+\(\frac{7}{n-2}\)=n-2+\(\frac{7}{n-2}\)

n-2 là số nguyên => \(\frac{7}{n-2}\)cũng là số nguyên =>n-2 thuộc Ư(7)={1;7;-1;-7}

=> n=3;9;1;-5

Đúng thì k cho mình

23 tháng 2 2017

\(\frac{n^2-2n^2+3}{n-2}=\frac{-n^2+3}{n-2}=\frac{-\left(n^2-2^2\right)-1}{n-2}=\frac{-\left(n-2\right)\left(n+2\right)}{n-2}-\frac{1}{n-2}=-\left(n+2\right)-\frac{1}{n-2}\)

         Để PT trên là số nguyên thì:\(1⋮\left(n-2\right)\)hay \(\left(n-2\right)\inƯ\left(1\right)\)

                           Ư(1) là:[1,-1]

Do đó ta được bảng sau:

                 

n-2-11
n13

                  Vậy để PT nguyên thì n=1;3

19 tháng 4 2016

n3 - 2n2 + 3 chia hết cho n-2

n- 2n2 + 3 = n2 (n-2)+3

=>n-2 E Ư(3)={1;-1;3;-3}

n-2=1=>n=3

n-2=-1=>n=1

n-2=3=>n=4

n-2=-3=>n=-1

Vậy n = {1;-1;3;4}

\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)

Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp

nên n^3+3n^2+2n chia hết cho 3!=6

=>Để P nguyên thì 2n+1/1-2n nguyên

=>2n+1 chia hết cho 1-2n

=>2n+1 chia hết cho 2n-1

=>2n-1+2 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;2;-2\right\}\)

=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)

17 tháng 8 2015

Ta có \(\frac{n^3-2n^2+3}{n-2}=\frac{n^2\left(n-2\right)}{n-2}+\frac{3}{n-2}=n^2+\frac{3}{n-2}\)

Để phân số trên là số nguyên thì \(\frac{3}{n-2}\)cũng là số nguyên

=>n-2 thuộc Ư(3)={-1;1;-3;3}

Ta có bảng sau:

n-2-11-33
n13-15

Vậy để \(\frac{n^3-2n^2+3}{n-2}\)là số nguyên thì n={1;-1;3;5}

8 tháng 5 2017

Gợi ý nè:

Bạn phân tích phân số \(\frac{n^3-2n^2+3}{n-2}\) ra....

Rồi lập bảng xem số nào thuộc giá trị của \(n\in Z\)

Kết quả nè:

\(n=1;-1;3;5\)

22 tháng 1 2024

a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2

=> (n - 2) + 3 ⋮ n - 2

 Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2

=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}

 => n ∈ {-1;1;3;5}

b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1

=> (4n - 2) + 7 ⋮ 2n - 1

=> 2(2n - 1) + 7 ⋮ 2n - 1

 Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1

=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}

=> n ∈ {-3;0;1;4}

2 tháng 8 2023

\(A=n^4+2n^3+2n^2+n+7\)

\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)

\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)

\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)

\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)

Ta lại có :

\(\left(n^2+n+1\right)^2-A\)

\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)

\(=n^2+n-6\)

Để \(n^2+n-6>0\)

\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)

Nên A không phải là số chính phương

Xét \(-3\le n\le2\)

Để A là số chính phương

\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)

Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương

\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài