\(\frac{2x6x10+6x10x14+10x14x18+...+1994x1998x2002}{1x3x5+3x5x7+5x7x9+...+97x99x101}\)
Rút gọn biểu thức trên, ta được: A=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3.5.7+6.10.14+9.15.21}{5.7.9+10.14.18+15.21.27}\)
= \(\frac{3.5.7+3.2.5.2.7.2+3.3.5.3.7.21}{5.7.9+5.2.7.2.9.2+5.3.7.3.9.3}\)
= \(\frac{3.5.7+3.5.7.2.2.2+3.5.7.3.3.3}{5.7.9+5.7.9.2.2.2+5.7.9.3.3.3}\)
= \(\frac{3.5.7+3.5.7.8+3.5.7.27}{5.7.9+5.7.9.8+5.7.9.27}\)
= \(\frac{3.5.7.\left(1+8+27\right)}{5.7.9.\left(1+8+27\right)}\)
= \(\frac{3.5.7.36}{5.7.9.36}\)
= \(\frac{1}{3}\)
A = \(\dfrac{2}{1\times3\times5}\) + \(\dfrac{2}{3\times5\times7}\) + \(\dfrac{2}{5\times7\times9}\)+\(\dfrac{2}{7\times9\times11}\)
A = \(\dfrac{1}{2}\) x (\(\dfrac{4}{1\times3\times5}\) + \(\dfrac{4}{3\times5\times7}\) + \(\dfrac{4}{5\times7\times9}\) + \(\dfrac{4}{7\times9\times11}\))
A = \(\dfrac{1}{2}\)x (\(\dfrac{1}{1\times3}\)-\(\dfrac{1}{3\times5}\)+\(\dfrac{1}{3\times5}\)-\(\dfrac{1}{5\times7}\)+\(\dfrac{1}{5\times7}\)-\(\dfrac{1}{7\times9}\)+\(\dfrac{1}{7\times9}\)-\(\dfrac{1}{9\times11}\))
A = \(\dfrac{1}{2}\)x (\(\dfrac{1}{1\times3}\) - \(\dfrac{1}{9\times11}\))
A = \(\dfrac{1}{2}\) x (\(\dfrac{1}{3}-\dfrac{1}{99}\))
A = \(\dfrac{1}{2}\times\) \(\dfrac{32}{99}\)
A = \(\dfrac{16}{99}\)
B = \(\dfrac{1}{1\times2\times3}\) + \(\dfrac{1}{2\times3\times4}\) + \(\dfrac{1}{3\times4\times5}\) + \(\dfrac{1}{4\times5\times6}\)
B = \(\dfrac{1}{2}\) x (\(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+\dfrac{2}{4\times5\times6}\))
B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1\times2}\)-\(\dfrac{1}{2\times3}\) + \(\dfrac{1}{2\times3}\)-\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{3\times4}\)-\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{4\times5}\)-\(\dfrac{1}{5\times6}\))
B = \(\dfrac{1}{2}\)x(\(\dfrac{1}{1\times2}\) - \(\dfrac{1}{5\times6}\))
B = \(\dfrac{1}{2}\)x (\(\dfrac{1}{2}-\dfrac{1}{30}\))
B = \(\dfrac{1}{2}\)x \(\dfrac{7}{15}\)
B = \(\dfrac{7}{30}\)
\(A=9\left(\dfrac{4}{1\cdot3\cdot5}+\dfrac{4}{3\cdot5\cdot7}+...+\dfrac{4}{25\cdot27\cdot29}\right)\)
\(=9\left(\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{25\cdot27}-\dfrac{1}{27\cdot29}\right)\)
\(=9\left(\dfrac{1}{3}-\dfrac{1}{783}\right)=\dfrac{260}{87}\)
\(A=\frac{2.6.10+6.10.14+...+1994.1998.2002}{1.3.5+3.5.7+...+97.99.101}\)
\(=\frac{1.2^3.3.5+3.2^3.5.7+....+2^3.97.99.101}{1.3.5+3.5.7+...+97.99.101}\)
\(=\frac{2^3\left(1.3.5+3.5.7+...+97.99.101\right)}{1.3.5+3.5.7+...+97.99.101}\)
\(=8\)
Vậy A = 8