Rút gọn: \(T=\sqrt{a+b+c+2\sqrt{ac+bc}}+\sqrt{a+b+c-2\sqrt{ac+bc}}\) với \(a,b,c>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ \(Q=\frac{\left(2-\sqrt{a}\right)\left(\sqrt{a}+3\right)}{\sqrt{a}+3}=2-\sqrt{a}\)
Do \(\sqrt{a}\ge0\Rightarrow2-\sqrt{a}\le2\Rightarrow Q_{max}=2\) khi \(a=0\)
2/
\(N=\sqrt{a+b+2\sqrt{\left(a+b\right)c}+c}+\sqrt{a+b-2\sqrt{\left(a+b\right)c}+c}\)
\(=\sqrt{\left(\sqrt{a+b}+\sqrt{c}\right)^2}+\left(\sqrt{a+b}-\sqrt{c}\right)^2\)
\(=\sqrt{a+b}+\sqrt{c}+\left|\sqrt{a+b}-\sqrt{c}\right|\)
TH1: Nếu \(a+b\ge c\Rightarrow\sqrt{a+b}-\sqrt{c}\ge0\)
\(\Rightarrow Q=\sqrt{a+b}+\sqrt{c}+\sqrt{a+b}-\sqrt{c}=2\sqrt{a+b}\)
TH2: Nếu \(a+b< c\Rightarrow\sqrt{a+b}-\sqrt{c}< 0\)
\(\Rightarrow Q=\sqrt{a+b}+\sqrt{c}+\sqrt{c}-\sqrt{a+b}=2\sqrt{c}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
\(Q=\sqrt{a+b+c+2\sqrt{ab+bc}}+\sqrt{a+b+c+2\sqrt{ac+bc}}\)
\(=\sqrt{(a+c)+b+2\sqrt{b(a+c)}}+\sqrt{(a+b)+c+2\sqrt{c(a+b)}}\)
\(=\sqrt{(\sqrt{a+c}+\sqrt{b})^2}+\sqrt{(\sqrt{a+b}+\sqrt{c})^2}\)
\(=\sqrt{a+c}+\sqrt{b}+\sqrt{a+b}+\sqrt{c}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\sqrt{a+b+c+2\sqrt{ac+bc}}+\sqrt{a+b+c-2\sqrt{ac+bc}}=\sqrt{a+b+2\sqrt{c}.\sqrt{a+b}+c}+\sqrt{a+b-2\sqrt{c}.\sqrt{a+b}+c}=\sqrt{\left(\sqrt{a+b}+\sqrt{c}\right)^2}+\sqrt{\left(\sqrt{a+b}-\sqrt{c}\right)^2}\)\(=\sqrt{a+b}+\sqrt{c}+\left|\sqrt{a+b}-\sqrt{c}\right|=\sqrt{a+b}+\sqrt{c}+\left(\sqrt{a+b}-\sqrt{c}\right)=2\sqrt{a+b}\)(vì a,b,c là độ dài ba cạnh của tam giác nên \(a+b>c>0\Rightarrow\sqrt{a+b}>\sqrt{c}\))
2222222222222222222222222222222222222222222222222222222222222222222222222222222222
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có : \(P=\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ac}}{b+2\sqrt{ac}}+\frac{\sqrt{ab}}{c+2\sqrt{ab}}\le\frac{\frac{1}{2}\left(b+c\right)}{a+b+c}+\frac{\frac{1}{2}\left(a+c\right)}{a+b+c}+\frac{\frac{1}{2}\left(a+b\right)}{a+b+c}\)
\(\Rightarrow P\le\frac{a+b+c}{a+b+c}=1\)
=> GTLN của P là 1 khi a=b=c
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét \(\sqrt{\dfrac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\dfrac{\left(a\left(a+b+c\right)+bc\right)\left(b\left(a+b+c\right)+ac\right)}{c\left(a+b+c\right)+ab}}\)
\(=\sqrt{\dfrac{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}{ac+bc+c^2+ab}}\)
\(=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)\(=\sqrt{\left(a+b\right)^2}=a+b\)
Tương tự cho 2 đẳng thức còn lại rồi cộng theo vế
\(P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT Cô-si:
\(A\le\dfrac{a+b}{2\sqrt{c+ab}}+\dfrac{b+c}{2\sqrt{a+bc}}+\dfrac{c+a}{2\sqrt{b+ac}}\)\(\le\dfrac{a+b}{2\sqrt{2\sqrt{abc}}}+\dfrac{b+c}{2\sqrt{2\sqrt{abc}}}+\dfrac{c+a}{2\sqrt{2\sqrt{abc}}}\)\(=\dfrac{a+b+c}{\sqrt[4]{4abc}}=\dfrac{1}{\sqrt[4]{4abc}}\ge\dfrac{1}{\sqrt{\left(a+b+c\right).\dfrac{2}{3}}}\)(BĐT Cô-si)\(=\dfrac{1}{\sqrt{\dfrac{2}{3}}}=\dfrac{\sqrt{6}}{2}\)
Vậy Amin=\(\dfrac{\sqrt{6}}{2}\Leftrightarrow a=b=c=\dfrac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Áp dụng BĐT AM-GM ta có
\(\frac{ab\sqrt{ab}}{a+b}\le\frac{ab\sqrt{ab}}{2\sqrt{ab}}=\frac{ab}{2}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{bc\sqrt{bc}}{b+c}\le\frac{bc}{2};\frac{ac\sqrt{ac}}{a+c}\le\frac{ac}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=Σ\frac{ab\sqrt{ab}}{a+b}\le\frac{ab+bc+ca}{2}=VP\)
Khi \(a=b=c\)
b)Áp dụng tiếp AM-GM:
\(b\sqrt{a-1}\le\frac{b\left(a-1+1\right)}{2}=\frac{ab}{2}\)
\(a\sqrt{b-1}\le\frac{a\left(b-1+1\right)}{2}=\frac{ab}{2}\)
Cộng theo vế 2 BĐT trên ta có:
\(VT=b\sqrt{a-1}+a\sqrt{b-1}\le ab=VP\)
Khi \(a=b=1\)
\(t^2=a+b+c+2\sqrt{ac+bc}+a+b+c-2\sqrt{ac+bc}+2\sqrt{\left(a+b+c+2\sqrt{ac+bc}\right)\left(a+b+c-2\sqrt{ac+bc}\right)}\)
\(T^2=2a+2b+2c+2\sqrt{a^2+b^2+c^2+2ab+2bc+2ac-4ac-4bc}\)
\(T^2=2a+2b+2c+\sqrt{a^2+b^2+c^2-2ac-2bc+2ab}\)
\(T^2=2a+2b+2c+\sqrt{\left(a+b-c\right)^2}\)
\(T^2=2a+2b+2c+a+b-c\) ( vì a,b,c> 0 )
\(T^2=3a+3b+c\Leftrightarrow t=\sqrt{3a+3b+c}\)