K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

44099

20 tháng 8 2023

\(S=1+4^2+4^3+...+4^{99}\)

\(\Rightarrow S+4=1+4+4^2+4^3+...+4^{99}\)

\(\Rightarrow S+4=\dfrac{4^{99+1}-1}{4-1}=\dfrac{4^{100}-1}{3}\)

\(\Rightarrow S=\dfrac{4^{100}-1}{3}-4=\dfrac{4^{100}-13}{3}\)

\(\Rightarrow3S+1=3.\dfrac{4^{100}-13}{3}+1\)

\(\Rightarrow3S+1=4^{100}-12\)

\(\Rightarrow3S+1=2^{200}-2^2.3>2^{100}\)

 mà \(32^{20}=\left(2^5\right)^{20}=2^{100}\)

\(\Rightarrow3S+1>32^{20}\)

4 tháng 10 2022

ai bt tự làm

 

15 tháng 4 2023

ngu tự chịu

29 tháng 9 2016

tổng \(\frac{4^{21}-4}{3}\)đó là tổng S nhá                                                                                                                                                     ta có :\(4^{21}=4^{19}.4^3\)-4+4                                                                                                                                                             vậy 17 . 4^19 lớn nơn

9 tháng 3 2016

ta có 3S = 1*2*3 + 2*3*3 +3*4*3 + ......+n*(n+1)*3

       3S = 1*2*3  + 2*3*(4-1) + 3*4*(5-2) + ......+n*(n+1)*(n+2-n+1)

       3S = 1*2*3 + 2*3*4 - 1*2*3 + 3*4*5 - 2*3*4 + .....+n*(n+1)*(n+2) - (n-1)*n*(n+1)
       3S = (n-1)*n*(n+1)

NV
25 tháng 12 2022

Ta có: \(64^{12}=\left(4^3\right)^{12}=4^{36}\)

\(S=4^0+4^1+...+4^{34}+4^{35}\)

\(\Rightarrow4S=4^1+4^2+...+4^{35}+4^{36}\)

\(\Rightarrow4S-S=4^{36}-4^0\)

\(\Rightarrow3S=4^{36}-1< 4^{36}\)

Vậy \(3S< 64^{12}\)

25 tháng 12 2022

\(4^0+4^1+4^2+4^3+...+4^{35}\\ 4S=4^1+4^2+4^3+4^4+...+4^{36}\\ 4S-S=\left(4^1+4^2+4^3+4^4+...+4^{36}\right)-\left(4^0+4^1+4^2+4^3+...+4^{35}\right)\\ 3S=4^{36}-1=64^{12}-1\\ Vì64^{12}-1< 64^{12}\\ \Rightarrow3S< 64^{12}\)

22 tháng 10 2023

\(S=4+4^2+4^3+...+4^9+4^{10}\\4S=4^2+4^3+4^4+...+4^{10}+4^{11}\\4S-S=(4^2+4^3+4^4+...+4^{10}+4^{11})-(4+4^2+4^3+...+4^9+4^{10})\\3S=4^{11}-4\\\Rightarrow 3S +4=4^{11}\)

Mặt khác: \(3S+4=4^x\)

\(\Rightarrow 4^{11}=4^x\\\Rightarrow x=11(tm)\)

30 tháng 1 2016

mình ko biết

17 tháng 6 2017

CHỨNG MINH S CHIA HẾT CHO 10 :

\(S=4+4^2+...+4^{2004}\)

\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2003}+4^{2004}\right)\)

\(S=1\left(4+4^2\right)+4^3\left(4+4^2\right)+...+4^{2003}\left(4+4^2\right)\)

\(S=1.20+4^3.20+...+4^{2003}.20\)

\(S=20.\left(1+4^3+...+4^{2003}\right)\)CHIA HẾT CHO 10 (VÌ 20 CHIA HẾT CHO 10 )

\(=>dpcm\)

CHỨNG MINH 3S+4 CHIA HẾT CHO 42004

\(S=4+4^2+4^3+...+4^{2004}\)

\(4S=4+4^2+4^3+...+4^{2005}\)

\(3S=4S-S=4^{2005}-4\)

MÀ 42005 CHIA HẾT CHO 42004

\(=>3S+4\)CHIA HẾT CHO \(4^{2004}\left(dpcm\right)\)

17 tháng 6 2017

\(S=1+4^2+...+4^{2004}\)

\(4S=4+4^3+...+4^{2005}\)

\(\Rightarrow\)\(4S-S=4+4^3+...+4^{2005}-1-4^2-...-4^{2004}\)

\(\Rightarrow\)\(3S=\left(4^3-4^3\right)+...+\left(4^{2004}-4^{2004}\right)-\left(4^{2005}+4-1-4^2\right)\)

\(\Rightarrow\)