K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

Ta có A=1-(\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+....+\(\frac{1}{2^{2014}}\))

Đặt B=\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+...+\(\frac{1}{2^{2014}}\)\(\Rightarrow\)2B=1+\(\frac{1}{2}\)+...+\(\frac{1}{2^{2013}}\)

\(\Leftrightarrow\)2B-B=(1+\(\frac{1}{2}\)+...+\(\frac{1}{2^{2013}}\))-(\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+...+\(\frac{1}{2^{2014}}\))=1-\(\frac{1}{2^{2014}}\)

Suy ra A=\(\frac{1}{2^{2014}}\)>\(\frac{1}{2^{2015}}\)(đpcm)

12 tháng 3 2019

\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{\frac{5}{2012}+\frac{5}{2013}-\frac{5}{2014}}-\frac{\frac{2}{2013}+\frac{2}{2014}-\frac{2}{2015}}{\frac{3}{2013}+\frac{3}{2014}-\frac{3}{2015}}\)

=\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{5\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}\right)}-\frac{2\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}{3\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}=\frac{1}{5}-\frac{2}{3}=\frac{3}{15}-\frac{10}{15}=-\frac{7}{15}\)

20 tháng 6 2017

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)

\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)

\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)

14 tháng 2 2017

nè mình gợi ý cho       gọi a= 1-1/2-1/2^2-1/2^3-......... ......1/2^2014                                                                                                                    1 / 2^2>1 / 2.3                                                                                                                                                                                  1/2^3>1/3.4                                                                                                                                                                                       ................                                                                                                                                                                                      1/2^2014<1/2014.2015                                                                                                                                                                       nen 1-1/2-1/2^2-1/2^3-.........................1/^2014>1-1/1.2-1/2.3-1/3.4-........................1/2014.2015                                                            a<1-[1-1/2015]  a<1-2014/2015    a<1/2015

AH
Akai Haruma
Giáo viên
31 tháng 10 2024

Lời giải:
$A=2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+...+2014}$

$=2015+\frac{2015}{\frac{2.3}{2}}+\frac{2015}{\frac{3.4}{2}}+....+\frac{2015}{\frac{2014.2015}{2}}$

$=2015+4030(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015})$

$=2015+4030(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015})$

$=2015+4030(\frac{1}{2}-\frac{1}{2015})=2015+2015-2$

$=4028$

ai tic cho mình kết bạn vơi người đó( mình mời)

ai **** cho mình vậy nhắn cho mình