K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

\(f(x) = 2x^3 + ax + b\)

Gọi \(f(x) = 2x^3 + ax+b = (x+1).Q(x) + 6 \)  (1)

\(f(x) = 2x^3 + ax + b = (x-2).H(x) + 21\)  (2)

Thay x = -1 vào (1) ta được : 

\(-2 - a + b = 6 => b-a = 8\)  (3)

Thay x = 2 vào (2) ta được : 

\(16+2a+b=21 => 2a + b = 5\)  (4)

Từ (3) và (4) \(=> b-a - 2a - b = 8-5 \)

\(=> -3a = 3 <=> a = -1 => b = 7\)

DD
25 tháng 10 2021

\(f\left(x\right)=x^3+ax+b\)

\(f\left(x\right)\)chia \(x+1\)dư \(7\)nên \(f\left(-1\right)=7\)

\(f\left(x\right)\)chia \(x-3\)dư \(5\)nên \(f\left(3\right)=5\)

\(\hept{\begin{cases}-1-a+b=7\\27+3a+b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-\frac{15}{2}\\b=\frac{1}{2}\end{cases}}\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

Theo định lý Bezout về phép chia đa thức thì số dư của \(f(x)=2x^3+ax+b\) cho \(x+1\)\(x-2\) lần lượt là \(f(-1)\)\(f(2)\)

Do đó:

\(\left\{\begin{matrix} f(-1)=-2-a+b=-6\\ f(2)=16+2a+b=21\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} -a+b=-4\\ 2a+b=5\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=3\\ b=-1\end{matrix}\right.\)