K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2021

Gọi E là giao điểm các đường trung trực của MN và BC.

Theo tính chất đường trung trực ta có \(\left\{{}\begin{matrix}EM=EN\\EB=EC\end{matrix}\right.\).

Lại có BM = CN (gt) nên \(\Delta EMB=\Delta ENC(c.c.c)\).

Suy ra \(\widehat{EMB}=\widehat{ENC}\) nên \(\widehat{EMA}=\widehat{END}\).

Lại có BM = CN và AB = CD nên AM = ND.

Xét \(\Delta EMA\) và \(\Delta END\) có: \(\left\{{}\begin{matrix}AM=ND\\\widehat{EMA}=\widehat{END}\\EM=EN\end{matrix}\right.\)

\(\Rightarrow\Delta EMA=\Delta END\left(c.g.c\right)\Rightarrow EM=EN\).

Suy ra E thuộc đường trung trực của MN.

Vậy đường trung trực của ba đoạn AD, MN, BC đồng quy.

9 tháng 8 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Trong ΔABC, ta có AC > AB

Suy ra: ∠(ABC) > ∠(ACB) (đối diện với cạnh lớn hơn là góc lớn hơn) (1)

Ta có: AB = BM (gt) ⇒ ΔABM cân tại B

Suy ra: ∠(AMB) = ∠A1(tính chất tam giác cân)

Trong ΔABM, ta có ∠(ABC) là góc ngoài tại đỉnh B

Suy ra: ∠(ABC) = ∠(AMB) + ∠A1 hay : ∠(ABC) = 2.∠(AMB)

Suy ra: ∠(AMB) = 1/2 ∠(ABC) (2)

Lại có: AC = CN (gt) ⇒ ΔACN cân tại C

Suy ra: ∠(ANC) = ∠A2(tính chất tam giác cân)

Trong ΔACN, ta có ∠(ACB) là góc ngoài tại đỉnh C

Suy ra: ∠(ACB) = ∠(ANC) + ∠A2 hay ∠(ACB) = 2∠(ANC)

Suy ra: ∠(ANC) = 1/2 ∠(ACB) (3)

Từ (1), (2) và (3) suy ra: ∠(AMB) > ∠(ANC) .

29 tháng 7 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Trong ΔAMN, ta có: ∠(AMB) > ∠(ANC)

Suy ra: AN > AM (đối diện với góc lớn hơn là cạnh lớn hơn).

8 tháng 11 2016

giải :

Xét tam giác ABC cân tại A có:

góc ABC = góc ACB (t/c)

mà góc MIB = góc ACB ( 2 góc đồng vị do MI//AC)

=> góc ABC = góc MIB

hay góc MBI = góc MIB => tam giác MIB cân tại M ( dấu hiệu nhận biết)

=> MB=MI ( t/c)

Mà MB= CN (gt)

=> MI=CN

Xét tứ giác MINC có

MI// CN (gt)

MI = CN (cmt)

=> tứ giác MINC là hình bình hành ( dấu hiệu nhận biết)

Xét hình bình hành MINC có

MN giao với IC tại O (gt)

=> O là trung điểm của MN(t/c)

=> OM= ON

Vậy OM=ON