cho a b c là các nghiệm của phương trình x^3-3x+1=0 .Tính S=a^9+b^9+c^9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b,c lá các nghiệm của phương trình \(x^3-3x+1=0\) nên
\(x^3-3x+1=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-3x+1=x^3-\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x-abc\)
Đồng nhất hệ số 2 vế ta được
\(\hept{\begin{cases}a+b+c=0\\ab+bc+ca=-3\\abc=-1\end{cases}}\)
Vì a là nghiệm của phương trình đã cho
\(\Rightarrow a^3-3a+1=0\)
Do đó \(a^9=\left(3a-1\right)^3=27a^3-27a^2+9a-1\)
\(=27\left(3a-1\right)-27a^2+9a-1\)
\(=-27a^2+90a-28\)
Tương tự \(b^9=-27b^2+90b-28\)
\(c^9=-27c^2+90c-28\)
\(\Rightarrow a^9+b^9+c^9=-27\left(a^2+b^2+c^2\right) +90\left(a+b+c\right)-84\)
\(=-27\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]+90\left(a+b+c\right)-84\)
Thay a+b+c=0 có :
\(ab+bc+ca=-3\)
\(\Rightarrow S=-246\)
Thay x = 3 lần lượt vào từng vế của mỗi bất phương trình, ta được:
a) 2x + 3 = 2.3 + 3 = 9
Vậy x = 3 không là nghiệm của bất phương trình 2x + 3 < 9.
b) -4x = -4.3 = -12
2x + 5 = 2.3 + 5 = 11
-12 < 11 nên x = 3 không phải nghiệm của bất phương trình -4x > 2x + 5.
c) 5 – x = 5 – 3 = 2
3x – 12 = 3.3 – 12 = -3.
Vì 2 > -3 nên x = 3 là nghiệm của bất phương trình 5 – x > 3x – 12.
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)