8x.(x-6)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^2-2x-1=0
\)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow
\)\(\left[\begin{array}{}
x-1=\sqrt{2}\\
x-1=-\sqrt{2}
\end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
=\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016}
{(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016}
{x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{2016}{12x + 2016}\)
=\(\dfrac{2016}{12(x+1)+2004}\)
=\(\dfrac{168}{x+1+167}\)
=\(\left[\begin{array}{}
\dfrac{168}{\sqrt{2}+167}\\
\dfrac{168}{-\sqrt{2}+167}
\end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x
\) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.
Lời giải:
\(\frac{4x^2-8x}{-x^2+x+6}<0\\
\Leftrightarrow \frac{4x(x-2)}{-(x^2-x-6)}<0\\
\Leftrightarrow \frac{4x(x-2)}{x^2-x-6}>0\\
\Leftrightarrow \frac{4x(x-2)}{(x+2)(x-3)}>0\)
Đến đây xảy ra 2 TH:
TH1: $4x(x-2)>0$ và $(x+2)(x-3)>0$
$4x(x-2)>0\Leftrightarrow x> 2$ hoặc $x<0(1)$
$(x+2)(x-3)>0\Leftrightarrow x> 3$ hoặc $x<-2(2)$
Từ $(1); (2)\Rightarrow x>3$ hoặc $x<-2$
TH2: $4x(x-2)<0$ và $(x+2)(x-3)<0$
$4x(x-2)<0\Leftrightarrow 0< x< 2(3)$
$(x+2)(x-3)<0\Leftrightarrow -2< x< 3(4)$
Từ $(3); (4)\Rightarrow 0< x< 2$
Vậy $x>3$ hoặc $x< -2$ hoặc $0< x< 2$
a) x^2 +3x-2x-6=0
x^2 + x = 6
x^2 + 0.5x + 0.5x = 6
x (x + 0.5) + 0.5 (x + 0.5) =5.75
(x+0.5)^2 = 5.75
( x + 5 ) . ( x + 6 ) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-6\end{matrix}\right.\)
Vậy \(x=-5\) hoặc \(x=-6\)
8x - 9x -2x - 15 = 0
\(\Rightarrow8x-9x-2x=0+15\)
\(\Rightarrow-3x=15\)
\(\Rightarrow x=15:\left(-3\right)\)
\(\Rightarrow x=-5\)
a, \(\left(x+5\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-6\end{matrix}\right.\)
Vậy ......
(5-x).(2x-6)=0
=> 5-x=0 hoặc 2x-6=0
=> x=5 hoặc x=3
8x.(x+1)=0
=>8x=0 hoặc x+1=0
=>x=0 hoặc x=-1
8 x ( x + 1 ) = 0
( x + 1 ) = 0
x + 1 = 0
x = 1
chúc bạn học tốt!!!!!!!!!!!!!
⇔2(x²+x+1)(3−x)=0
⇔3−x=0
⇔x=3
b, (8x−4)(x²+2x+2)=0
⇔4(2x−1)(x²+2x+2)=0
⇔2x−1=0
⇔x=12
a) Tam thức \(f(x) = - 5{x^2} + x - 1\) có \(\Delta = - 19 < 0\), hệ số \(a = - 5 < 0\) nên f(x) luôn âm (cùng dấu với a) với mọi x, tức là \(\)\( - 5{x^2} + x - 1 < 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm
b) Tam thức \(g(x) = {x^2} - 8x + 16\) có \(\Delta = 0\), hệ số a=1>0 nên g(x) luôn dương (cùng dấu với a) với mọi \(x \ne 4\), tức là \({x^2} - 8x + 16 > 0\) với mọi \(x \ne 4\)
Suy ra bất phương trình có nghiệm duy nhất là x = 4
c) Tam thức \(h(x) = {x^2} - x + 6\) có \(\Delta = - 23 < 0\), hệ số a=1>0 nên h(x) luôn dương (cùng dấu với a) với mọi x, tức là \({x^2} - x + 6 > 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm.
8x ( x-6)= 0
\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
8x.(x-6)=0
vị tích bằng 0 nên một trong ba số hạng đó phải bằng 0
8x.(x-6)=8.0.(0-6)=8.0.(-6)=0⇒x=0
8x.(x-6)=8.6.(6-6)=8.6.0=0⇒x=6
vậy x=0;6