cho tam giac ABC vuông tai A,lấy M trên cạnh ac.tứ c kẻ đường thảng vuong góc với BM cắt AB tại E cắt BM tại D cho góc BMC là 120 đọ và diện tích tam giac ADC là 36 Tinh dien tich tam giac BDC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác ABC cân tại A => góc B= góc C1
Mà góc C1= C2 (đối đỉnh)
Từ 2 điều trên => góc B= góc C2
Xét tam giác MDA và tam giác NEC, có:
góc B= góc C2
góc D1= góc E (= 90 độ) }=> tam giác MDA = tam giác NEC ( cạnh huyền- góc nhọn)
MB=NC (gt)
b) Vì tam giác MDA = tam giác NEC(c/m a) => DM= EN ( 2 cạnh tg ứng)
Ta có: DM vuông góc BC và EN vuông góc BC
=> DM//EN
=> góc DMI= góc ENI ( so le trong)
Xét tam giác MID và tam giác NIE, có:
góc DMI= góc ENI(c/m trên)
DM= EN (c/m trên) }=>tam giác MID = tam giác NIE ( g.c.g)
góc MDI= góc IEN (=90 độ)
c)Ta có: AO là p/giác góc A
Mà tam giác ABC cân tại A
=> AO đồng thời là đường trung trực
=> OB=OC
d) Vì tam giác MID = tam giác NIE (c/m b)
=> MI= IN
Mà OI vuông góc MN
=> OI là trung trực MN
=> OM=ON
Xét tam giác MBo và tam giác NCO, có:
OM=ON(c/m trên)
BM=CN (gt) }=> tam giác MBO= tam giác NCO (c.c.c)
OB=OC(c/m c)