bài 1: tìm n thuộc z biết
n+3:2n+1
bài 2: tim 2 số nguyên a,b
a) a.b=-(a+b)
b)a.(b+1)+b=2
cho em hỏi dể 2 giờ này đi học voi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)\(n+3⋮4n-1\)nên bội của n - 3 là 4(n - 3) = 4n - 12 = 4n - 1 - 11 chia hết cho 4n - 1 =>\(11⋮4n-1\)
=> 4n - 1 = -11 ; -1 ; 1 ; 11 => 4n = -10 ; 0 ; 2 ; 12 => n = 0 ; 3 (vì\(n\in Z\))
Thử lại :
n | 0 | 3 |
n + 3 | 3 | 6 |
4n - 1 | -1 | 11 |
n + 3 có chia hết cho 4n - 1 | Có | Không |
Vậy n = 0
b)\(1-3n⋮2n+1\)nên bội của 1 - 3n là -2(1 - 3n) = 6n - 2 = 6n + 3 - 5 = 3(2n + 1) - 5 chia hết cho 2n + 1
=> 2n + 1 = -5 ; -1 ; 1 ; 5 => 2n = -6 ; -2 ; 0 ; 4 => n = -3 ; -1 ; 0 ; 2
Thử lại :
n | -3 | -1 | 0 | 2 |
1 - 3n | 10 | 4 | 1 | -5 |
2n + 1 | -5 | -1 | 1 | 5 |
1 - 3n có chia hết cho 2n + 1 | Có | Có | Có | Có |
Vậy n = -3 ; -1 ; 0 ; 2
2.Nếu n chẵn thì\(n.\left(5n+3\right)⋮2\)
Nếu n lẻ thì 5n lẻ mà 3 lẻ nên 5n + 3 chẵn =>\(n.\left(5n+3\right)⋮2\)
Vậy\(n.\left(5n+3\right)⋮2\forall n\in Z\)
3.a)\(\left|3x-6\right|\ge0\Rightarrow\left|3x-6\right|+3\ge3\)
Vậy GTNN của\(\left|3x-6\right|+3\)là 3 khi :\(\left|3x-6\right|=0\Leftrightarrow3x-6=0\Leftrightarrow3x=6\Leftrightarrow x=2\)
b)\(\left(x-1\right)^2\ge0\Rightarrow-2+\left(x-1\right)^2\ge-2\)
Vậy GTNN của -2 + (x - 1)2 là -2 khi : (x - 1)2 = 0 <=> x - 1 = 0 <=> x = 1
bài 1:
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){-1,-2,-4;1,2,4}
=>n\(\in\){0,-1,-3,2,3,5}
b)<=>2(2n+1)+2 chia hết 2n+1
=>4 chia hết 2n+1
=>2n+1\(\in\){-1,-2,-4,1,2,4}
=>n\(\in\){-1;-3;-7;3;5;9}
bài 3 : <=>2y+8+xy+4x-1y-4=11
=>(8-4)+(2y-1y)+xy+4x=11
=>4+1y+x.y+x.4=11
=>1y+x.(x+y)=11-4
=>y+x.x+y=8
=>(x+y)^2=8
=>x+y=3
=>x và y là các số có tổng =3 ( bn tự liệt kê nhé )
1) Coi a< b
ƯCLN (a;b) = 56 . Đặt a = 56m; b = 56n (m; n nguyên tố cùng nhau và m < n)
a + b = 224 => 56m + 56n = 224 => m + n = 4 => m = 1; n =3 => a = 56 và b = 168
Vậy...
2) Gọi d = ƯCLN(2n + 2; 2n+ 3)
=> 2n + 1 chia hết cho d; 2n +3 chia hết cho d
=> 2n + 3 - (2n + 1) chia hết cho d => 2 chia hết cho d => d = 1 hoặc d = 2
Mà 2n + 1 lẻ nên 2n + 1 không chia hết cho 2 => d = 1
Vậy...
3) Áp dụng công thức ƯCLN(a;b) . BCNN(a;b) = a.b => ƯCLN(a;b) = 2400 : 120 = 20
Đặt a = 20m; b= 20n( m; n nguyên tố cùng nhau; coi m< n)
a.b = 20m.20n = 400mn = 2400 => m.n = 6 = 1.6 = 2.3
+) m = 1; n = 6 => a = 20; b = 120
+) m = 2; n = 3 => a = 40; b = 60
Vây,...
4) a chia hết cho b nên BCNN(a;b) = a = 18
=> b \(\in\)Ư(18) = {1;2;3;6;9;18}
vậy,,,
Bài 1:
a. Gọi d là ƯCLN(n+2, n+3). Khi đó:
$n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.
Bài 2:
a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đó: $a+b=24x+24y=192$
$\Rightarrow 24(x+y)=192$
$\Rightarrow x+y=8$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$
$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$
\(n+3⋮2n+1\)
\(\Leftrightarrow2\left(n+3\right)⋮2n+1\)
\(\Leftrightarrow2n+6⋮2n+3\)
\(\Leftrightarrow\left(2n+3\right)+3⋮2n+3\)
Vì \(2n+3⋮2n+3\)
\(\Rightarrow6⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(6\right)=\){