K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

2xy - 6x + y = 8

2x(y - 3) + y = 8

2x(y - 3) + y - 3 = 8 - 3 

(2x + 1)(y - 3) = 5

=> 2x + 1 và y - 3 ∈ Ư(5) = { ± 1 ; ± 5 }

Ta có bảng sau :

2x + 1- 5- 11  5  
y - 3- 1- 551
x- 3- 102
y2- 284

Vậy ( x;y ) = { -3;2 ); ( -1;-2 ); ( 0;8 ); ( 2;4 ) }

b tương tự nha bạn !!

NV
16 tháng 3 2019

Các bài đều giống nhau:

a/ \(xy+2x-y=9\Leftrightarrow x\left(y+2\right)-\left(y+2\right)=7\)

\(\Leftrightarrow\left(x-1\right)\left(y+2\right)=7\)

Đến đây thì chia trường hợp thôi:

\(\left\{{}\begin{matrix}x-1=7\\y+2=1\end{matrix}\right.\) ;\(\left\{{}\begin{matrix}x-1=1\\y+2=7\end{matrix}\right.\); \(\left\{{}\begin{matrix}x-1=-1\\y+2=-7\end{matrix}\right.\);\(\left\{{}\begin{matrix}x-1=-7\\y+2=-1\end{matrix}\right.\)

Bạn tử giải ra tìm x, y, nếu nghiệm nào ko nguyên thì loại, nhưng câu này nguyên hết

b/ \(2xy-6x+y=13\Leftrightarrow2x\left(y-3\right)+y-3=10\)

\(\Leftrightarrow\left(2x+1\right)\left(y-3\right)=10\)

Làm y hệt câu trên, lưu ý \(2x+1\) luôn lẻ nên nó chỉ có thể là các ước lẻ của 10 như \(\pm1;\pm5\)

c/ \(xy-3x-3y=6\Leftrightarrow x\left(y-3\right)-3y+9=15\)

\(\Leftrightarrow x\left(y-3\right)-3\left(y-3\right)=15\Leftrightarrow\left(x-3\right)\left(y-3\right)=15\)

16 tháng 3 2019

a) Xem lại đề ?

b) 2xy - 6x +y = 13

=> 4xy - 12x + 2y =26

=> 4x( y - 3 ) + 2(y-3) = 26 - 6 = 20

=> (4x+2) (y-3 ) = 20

Lập bảng để tìm x,y

c) xy - 3x - 3y = 6

=> x( y -3 ) - 3(y-3 )=12

=> (x-3)(y-3) =12

27 tháng 7 2023

a

\(xy+3x-7y-21\\ =\left(xy+3x\right)-\left(7y+21\right)\\ =x\left(y+3\right)-7\left(y+3\right)\\ =\left(y+3\right)\left(x-7\right)\)

b

\(2xy-15-6x+5y\\ =\left(2xy-6x\right)-\left(15-5y\right)\\ =2x\left(y-3\right)-5\left(3-y\right)\\ =2x\left(y-3\right)+5\left(y-3\right)\\ =\left(y-3\right)\left(2x+5\right)\)

c Đề phải là \(\left(2x^2y+2xy^2-x-y\right)\) mới phân tích được: )

\(=2xy\left(x+y\right)-\left(x+y\right)\\ =\left(x+y\right)\left(2xy-1\right)\)

d

\(7x^3y-3xyz-21x^2+9z\\ =\left(7x^3y-21x^2\right)-\left(3xyz-9z\right)\\ =7x^2\left(xy-3\right)-3z\left(xy-3\right)\\ =\left(xy-3\right)\left(7x^2-3z\right)\)

e

\(4x^2-2x-y^2-y\\ =\left(2x\right)^2-y^2-\left(2x+y\right)\\ =\left(2x-y\right)\left(2x+y\right)-\left(2x+y\right)\\ =\left(2x+y\right)\left(2x-y-1\right)\)

f

\(9x^2-25y^2-6x+10y\\ =\left(3x\right)^2-\left(5y\right)^2-\left(6x-10y\right)\\ =\left(3x-5y\right)\left(3x+5y\right)-2\left(3x-5y\right)\\ =\left(3x-5y\right)\left(3x+5y-2\right)\)

a: =x(y+3)-7(y+3)

=(y+3)(x-7)

b: \(=2xy-6x+5y-15\)

=2x(y-3)+5(y-3)

=(y-3)(2x+5)

c: \(=2xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(2xy-1\right)\)

d: \(=xy\left(7x^2-3z\right)-3\left(7x^2-3z\right)\)

=(7x^2-3z)(xy-3)

e: =4x^2-y^2-2x-y

=(2x-y)(2x+y)-(2x+y)

=(2x+y)(2x-y-1)

f: =(3x-5y)(3x+5y)-2(3x-5y)

=(3x-5y)(3x+5y-2)

29 tháng 3 2022

`Answer:`

undefined

\(a)\left(-3x^2y-2xy^2+6\right)+\left(-x^2y+5xy^2-1\right)\)

\(=-3x^2y-2xy^2+6+-x^2y+5xy^2-1\)

\(=\left(-3x^2y-x^2y\right)+\left(-2xy^2+5xy^2\right)+\left(6-1\right)\)

\(=-4x^2y+3xy^2+5\)

\(b)\left(1,6x^3-3,8x^2y\right)+\left(-2,2x^2y-1,6x^3+0,5xy^2\right)\)

\(=1,6x^3-3,8x^2y+-2,2x^2y-1,6x^3+0,5xy^2\)

\(=\left(1,6x^3-1,6x^3\right)+\left(-3,8x^2y+-2,2x^2y\right)+0,5xy^2\)

\(=-6x^2y+0,5xy^2\)

\(c)\left(6,7xy^2-2,7xy+5y^2\right)-\left(1,3xy-3,3xy^2+5y^2\right)\)

\(=6,7xy^2-2,7xy+5y^2-1,3xy+3,3xy^2-5y^2\)

\(=\left(6,7xy^2+3,3xy^2\right)+\left(-2,7xy-1,3xy\right)+\left(5y^2-5y^2\right)\)

\(=10xy^2+-4xy\)

\(=10xy^2-4xy\)

\(d)\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)

\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)

\(=\left(3x^2+x^2-4x^2\right)+\left(-2xy-xy\right)+\left(y^2+2y^2+y^2\right)\)

\(=-3xy+4y^2\)

\(e)\left(x^2+y^2-2xy\right)-\left(x^2+y^2+2xy\right)+\left(4xy-1\right)\)

\(=x^2+y^2-2xy-x^2-y^2-2xy+4xy-1\)

\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(-2xy-2xy+4xy\right)-1\)

\(=-1\)

29 tháng 8 2023

\(a,3x\left(3x+6\right)=9x^2+18x\)

\(b,-\dfrac{1}{2}xy\left(4x^2+6x\right)\)

\(=-2x^3y-3x^2y\)

\(c,-2x^2y^3\left(\dfrac{1}{2}xy+4y^2\right)\)

\(=-x^3y^4-8x^2y^5\)

\(d,-6x^2\left(\dfrac{1}{3}xy^2-\dfrac{1}{2}y\right)\)

\(=-2x^3y^2+3x^2y\)

#\(Urushi\)

29 tháng 8 2023

a) 3x(3x+6) = 9x^2 + 18x b) -1/2xy(4x^2+6x) = -2x^3y - 3xy c) -2x^2y^3(1/2xy+4y^2 ) = -x^2y^2 - 8x^2y^5 d) -6x^2(1/3xy^2-1/2y) = -2xy + 3x^2y

Vậy kết quả của các biểu thức là: a) 9x^2 + 18x b) -2x^3y - 3xy c) -x^2y^2 - 8x^2y^5 d) -2xy + 3x^2y

a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2

b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y

=>A-B=12xy^2-14x^2y

c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2

=>A-B=-5x^2y^3-x^3y^2

d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2

24 tháng 5 2017

a)\(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)

\(\Leftrightarrow\frac{\left(x+y\right)^2-1}{\left(x+1\right)^2-y^2}\)

\(\Leftrightarrow\frac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}\)

\(\Leftrightarrow\frac{x+y-1}{x-y+1}\)

b)\(\frac{3x^3-6x^2y+xy^2-2y^3}{9x^5-18x^4y-xy^4+2y^5}\)

\(\Leftrightarrow\frac{3x^2\left(x-2y\right)+y^2\left(x-2y\right)}{9x^4\left(x-2y\right)-y^4\left(x-2y\right)}\)

\(\Leftrightarrow\frac{\left(3x^2+y^2\right)\left(x-2y\right)}{\left(9x^4-y^4\right)\left(x-2y\right)}\)

\(\Leftrightarrow\frac{3x^2+y^2}{\left(3x^2-y^2\right)\left(3x^2+y^2\right)}\)

\(\Leftrightarrow\frac{1}{3x^2-y^2}\)

24 tháng 8 2023

Để tính các biểu thức trên, ta sẽ áp dụng quy tắc nhân đa thức.

a) 2xy(3x+1) = 6x^2y + 2xy

b) -6x^2y(4x-5) = -24x^3y + 30x^2y

c) -3x^2(4x^2y-6xy) = -12x^4y + 18x^3y

d) 1/2xy^2(2x+3) = xy^2 + 3/2xy^2

e) 8x^2y^2(1/4xy-1/2x^2) = 2xy - 4x^2y^2

f) 5x(x^2+3x+1) = 5x^3 + 15x^2 + 5x

g) -1/2x^2y(2xy+6) = -x^3y - 3x^2y