số nguyên tố chia cho 21 dư 7 là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số nguyên tố cần tìm là a, chia cho 21 có thương là k, dư 7
=> a =21k +7=7(3k+1)
=> a chia hết cho 7 và là số nguyên tố => a=7 la duy nhất
Vì nếu a> 7 => a chia hết cho 7, cho chính nó và cho 1 => a là hợp số (trái với đầu bài)
phung viet hoang làm đúng nhưng sai một chút. Đáp số là 7.
Có mỗi 1 số thui mà
Gọi số cần tìm là a
Do a chia 21 dư 7 => a = 21k + 7 = 7.(3k + 1) (k thuộc N)
Với k = 0 thì a = 7.(3.0 + 1) = 7.1 = 7, là số nguyên tố, chọn
Với k khác 0 thì a có ít nhất 3 ước khác nhau là 1; 7; 3k + 1, không là số nguyên tố, loại
Vậy số cần tìm là 7
Gọi số cần tìm là a ( a ∈ N)
Ta có:
a chia 5 dư 1
⇒ a+4 chia hết cho 5
a chia 7 dư 3
⇒ a+4 chia hết cho 7
Mà (5,7) = 1
⇒ a+4 chia hết cho 35
Vì a là số tự nhiên nhỏ nhất
⇒a+4 = 35
⇒a=35-4
⇒a=31
Vậy số tự nhiên cần tìm là 31
1)Gọi số x là số tự nhiên nhỏ nhất cần tìm, theo đề bài ta có :
x=5a+1 ; x=7b+3
Nên 5a+1=7b+3
5a-7b=2
Ta thấy 5.6-7.4=2
Nên a=6; b=4
Vậy x=31
2) Theo đề bài : p2 + 4 và p2 - 4 đều là số nguyên tố
⇒ (p2 + 4) và (p2 - 4) ⋮ 1 và chính nó
⇒ (p2 + 4) và (p2 - 4) ϵ {1;2;3;5;7;11;13...}
Ta thấy khi (p2 + 4) = 13 và (p2 - 4) = 5 thì p=3
Vậy p=3
1: Gọi số cần tìm là a
Theo đề, ta có: a-1 chia hết cho 5 và a-3 chia hết cho 7
mà a nhỏ nhất
nên a=31
2: TH1: p=3
=>p^2+4=13 và p^2-4=5
=>NHận
Th2: p=3k+1
p^2-4=(3k+1-2)(3k+1+2)
=3(k+1)(3k-1)
=>Loại
TH3: p=3k+2
=>p^2-4=9k^2+12k+4-4
=9k^2+12k=3(3k^2+4k)
=>Loại
a)Số cần tìm chia hết cho 2 nên chữ số tận cùng phải là số chẵn
Nếu số cần tìm bớt đi 3 ta được số mới chia hết cho 5 => số mới có chữ số tận cùng là 0 hoặc 5
Do chữ số tận cùng của số cần tìm là chẵn nên khi bớt đi 3 là số lẻ nên số mới có chữ số tận cùng là lẻ => số mới có chữ số tận cùng là 5
=> số cần tìm có chữ số tận cùng là 5+3=8
Số cần tìm là số nhỏ nhất có 3 chữ số có chữ số tận cùng là 8 và chia hết cho 9 nên số cần tìm phải có tổng các chữ số chia hết cho 9
=> Số cần tìm thoả mãn điều kiện đề bài là: 108
thanh trooll la 1111111111111111111111111111111111111111111111111111111111111
êrerer32r324333