K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

mình ko biết xin lỗi bạn nha!

10 tháng 2 2017

100 nha bạn, chúc bạn học giỏi!

100 nha bạn, chúc bạn học giỏi!

100 nha bạn, chúc bạn học giỏi!

100 nha bạn, chúc bạn học giỏi!

10 tháng 2 2017

Vì \(\left|x+23\right|^{2007}\ge0;\left|y-1\right|^{234}\ge0\)

\(\Rightarrow\left|x+23\right|^{2007}+\left|y-1\right|^{234}\ge0\)

Dấu "=" xảy ra <=> \(\orbr{\begin{cases}\left|x+23\right|^{2007}=0\\\left|y-1\right|^{234}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-23\\y=1\end{cases}}}\)

10 tháng 2 2017

x=-23

y=1

1 tháng 3 2016

NHÂN BIỂU THỨC LIÊN HỢP 

KQ: X+Y=0

1 tháng 3 2016

0

 

1 tháng 3 2016

Không chẳng bít j luôn

22 tháng 9 2015

12 = (x+ y + z)= x2 + y+ z2 + 2(xy + yz + zx) = 1+ 2(xy + yz+ zx) => xy + yz + zx= 0

1 = (x+y+z)3 = (x + y)+ z3 + 3(x+ y+z)z(x+ y) = x3 + y+ z+ 3xy(x+ y) + 3(x+ y)z

 = 1 + 3xy(1 - z) + 3(xz + yz) = 1 - 3xyz + 3(xy + xz + yz) = 1 - 3xyz (do xy + xz + yz = 0 )

=> xyz = 0 

+) 0 =  (xy + yz + zx)2 = x2y2 + y2z2 + z2x2 + 2xyz. (y + x + z)  = x2y2 + y2z2 + z2x2  

=> x2y2 + y2z2 + z2x2  = 0 => xy = 0 và  yz = 0 và zx = 0  => có 2 trong 3 số x; y; z = 0 và số còn lại bằng 1 (vì x + y + z = 1)

=> P = 1

 

x^3-3x^2+5x+2007=0

nên \(x\simeq-11,57\)

y^3-3y^2+5y-2013=0

nên \(y\simeq13,57\)

=>x+y=2

5 tháng 2 2017

a,  |x-3y|^2007+|y+4|^2008

<=>|x-3y|^2007|=0=>|x-3y|=0 =>x-3y=0  (1)

<=>|y+4|^2008=0=>|y+4|=0=>y+4=0     (2)

tu 1,2 => y=-4 =>x=-12

b, <=>(x+y)^2016=0=>x+y=0  (1) 

    <=>2017|y-1|=0=>|y-1|=0=>y-1=0   (2)

tu 1, 2 =>y=1=>x=-1

3 tháng 8 2019

Chất là một từ tặng cho riêng dinhkhachoang

28 tháng 7 2015

+> Lấy (x + y + z)^2 = x^2+y^2+z^2+2xy+2yz+2xz = 1+2xy+2yz+2xz

Mà (x + y + z)^2 = 1

=> 2xy+2yz+2xz = 0

=> xy+yz+xz = 0

=> (xy+yz+xz)(x + y + z) = 0

+> Lấy (x + y + z)^3 = x^3 + y^3 + z^3 + 6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z = 1 +  6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z 

Mà (x + y + z)^3 = 1

=>  6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z = 0

=> 6xyz + 3(xy^2 + x^2y + x^2z + xz^2 + yz^2 + y^2z) = 0

=> 6xyz + 3[xy(x+y) + xz(x+z) + yz(y+z)] = 0

=> 6xyz + 3[xy(1-z) + xz(1-y) + yz(1-x)] = 0

=> 6xyz + 3(xy - xyz + xz - xyz + yz - xyz) = 0

Mà xy+yz+xz = 0

=> 6xyz - 9xyz = 0

=> xyz = 0

Mà (xy+yz+xz)(x + y + z) = 0

=> (xy+yz+xz)(x + y + z) = xyz

=> (xy+yz+xz)(x+y+z) - xyz = 0

Phân tích đa thức trên thành nhân tử, ta có (x+y)(y+z)(x+z) = 0

=> x+y = 0 ; y+z = 0 ; x+z = 0

Có x^2017 + y^2017 + z^2017

= (x+y)(x^2017 -x^2016y+...+y^2017) + z^2017         (1)

= z^ 2017
Có x+y = 0 => x = -y

=> (x + y + z )^2017 = z^2017                                  (2)

Từ (1) và (2) = > x^2017 + y^2017 + z^2017 = (x + y + z )^2017 = 1

 

kim chiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii