K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

tổng nghiệm bằng 0 nhé, vì \(x^2=a\left(a>0\right)\Leftrightarrow\orbr{\begin{cases}x=\sqrt{a}\\x=-\sqrt{a}\end{cases}}\)

do đó nghiệm đối nhau từng cặp, nên tổng bằng 0

Câu 3:  Phương trình : 2013x2 – 2015x + 2 = 0 có 2 nghiệm là:A.  x1 = -1 và x2 = -2/2013     B. x1 = 1 và  x2 = 2/2013C. Phương trình vô nghiệm     D. Cả ba đáp án trên đều sai.Câu 4: Cho phương trình x2 + 3x + 1 = 0, khi đó tổng các nghiệm bằng         A. 3                                  B. - 3                  C. 1                                   D. -1       Câu 5:  Phương trình nào sau đây vô nghiệm:           A.  4x2 -  5x + 1 = 0     B.  2x2 + x – 1 = 0    ...
Đọc tiếp

Câu 3:  Phương trình : 2013x2 – 2015x + 2 = 0 có 2 nghiệm là:

A.  x1 = -1 và x2 = -2/2013     B. x1 = 1 và  x2 = 2/2013

C. Phương trình vô nghiệm     D. Cả ba đáp án trên đều sai.

Câu 4: Cho phương trình x2 + 3x + 1 = 0, khi đó tổng các nghiệm bằng

         A. 3                                  B. - 3                  C. 1                                   D. -1       

Câu 5:  Phương trình nào sau đây vô nghiệm:          

 A.  4x2 -  5x + 1 = 0     B.  2x2 + x – 1 = 0     C.  3x2 + x + 2 = 0    D. x2 + x – 1 = 0

Câu 6:  Phương trình x2 - 7x + 6 = 0,khi đó tích các nghiệm bằng

               A.  -7              B.  6                         C. - 6                                D. 7

5
AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Câu 3:

$\Delta=2015^2-4.2013.2=2011^2$

Do đó pt có 2 nghiệm:

$x_1=\frac{2015+2011}{2.2013}=1$

$x_2=\frac{2015-2011}{2.2013}=\frac{2}{2013}$

Đáp án B.

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Câu 4:

Theo định lý Viet, tổng các nghiệm của pt là:

$S=\frac{-b}{a}=\frac{-3}{1}=-3$

Đáp án B.

26 tháng 5 2021

Xét \(\Delta=\text{​​}\)\(\left(-4m\right)^2-4\left(3m^2-3\right)\)\(=4m^2+12>0\forall m\)

=> Pt luôn có hai nghiệm pb

Theo viet \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=3m^2-3\end{matrix}\right.\)

\(P=\dfrac{2019}{\left|x_1-x_2\right|}\)\(\Leftrightarrow P^2=\dfrac{2019^2}{\left(x_1-x_2\right)^2}\)\(=\dfrac{2019^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)\(=\dfrac{2019^2}{16m^2-4\left(3m^2-3\right)}\)

\(=\dfrac{2019^2}{4m^2+12}\le\dfrac{2019^2}{12}\)

\(\Rightarrow P\le\dfrac{2019}{\sqrt{12}}\)

\(\Rightarrow P_{max}=\dfrac{2019\sqrt{12}}{12}\Leftrightarrow m=0\)

Vậy m=0

30 tháng 7 2017


a) Thay x=0 vào phương trình, ta được:

\(4\cdot0^2-2\cdot\left(2m+3\right)\cdot0+m+1=0\)

\(\Leftrightarrow m+1=0\)

hay m=-1

Áp dụng hệ thức Vi-et, ta có: 

\(x_1+x_2=\dfrac{2\left(2m+3\right)}{4}\)

\(\Leftrightarrow x_1=\dfrac{2\cdot\left(-2+3\right)}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

Vậy: Khi m=-1 và nghiệm còn lại là \(x=\dfrac{1}{2}\)

Thịnh ơi, vì sao mình không dùng x1x2 để tìm m

Ta có : \(x^2-2\left(m-1\right)x+m^2+m+1=0\left(a=1;b=-2m+2;c=m^2+m+1\right)\)

\(\Delta=\left(-2m+2\right)^2-4\left(m^2+m+1\right)=4m^2+4-4m^2-4m-4=-4m< 0\)

Nếu \(-4m< 0\Leftrightarrow m>0\) chắc ĐK là vậy.

Theo hệ thức Vi et ta có : \(x_1+x_2=2m+2;x_1x_2=m^2+m+1\)

Theo bài ra ta có : \(x_1^2+x_2^2=4x_1x_2-2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4x_1x_2-2\) Thay vao ta có pt mới : 

\(\Leftrightarrow\left(2m+2\right)^2-4\left(m^2+m+1\right)=4\left(m^2+m+1\right)-2\)

\(\Leftrightarrow4m+4-4m^2-m-1=4m^2+4m+4-2\)

\(\Leftrightarrow3m+3-4m^2=4m^2+4m+2\)

\(\Leftrightarrow-m+1-8m^2=0\) Ta có : \(\left(-1\right)^2-4\left(-8\right)=1+32=33>0\)

\(x_1=\frac{1-\sqrt{33}}{-16};x_2=\frac{1+\sqrt{33}}{-16}\)

Tớ ngu ! tớ nhận. 

Sửa từ dòng 4 trở lên.

\(\Leftrightarrow4m^2+4-4m^2-m-1=4m^2+4m+4-2\)

\(\Leftrightarrow3-m=4m^2+4m+2\)

\(\Leftrightarrow3-m-4m^2-4m-2=0\)

\(\Leftrightarrow1-5m-4m^2=0\)Ta có : \(\left(-5\right)^2-4\left(-4\right)=25+16=41>0\)

\(x_1=\frac{5-\sqrt{41}}{-4};x_2=\frac{5+\sqrt{41}}{-4}\)

=>(x1+x2)^2+x1x2=1

=>(-2m)^2+(-3)=1

=>4m^2=4

=>m=-1 hoặc m=1

25 tháng 5 2023

Do a = 1 và c = -3

⇒ a và c trái dấu

⇒ Phương trình luôn có hai nghiệm phân biệt

Theo Viét, ta có:

x₁ + x₂ = -2m

x₁x₂ = -3

Lại có:

x₁² + x₂² + 3x₁x₂ = 1

⇔ x₁² + 2x₁x₂ + x₂² + x₁x₂ = 1

⇔ (x₁ + x₂)² + x₁x₂ = 1

⇔ (-2m)² - 3 = 1

⇔ 4m² = 4

⇔ m² = 1

⇔ m = -1 hoặc m = 1

Vậy m = -1; m = 1 thì phương trình đã cho có hai nghiệm phân biệt x₁, x₂ thỏa mãn: x₁² + x₂² + 3x₁x₂ = 1

10 tháng 8 2018

a) Với m = 1 phương trình trở thành:

x 2  + 4x + 4 = 0 ⇔ (x + 2 ) 2  = 0 ⇔ x = -2

Vậy x = -2

b) Ta có: Δ' = m 2  - 5m + 4

Phương trình có hai nghiệm phân biệt

⇔ Δ' > 0 ⇔ m 2  - 5m + 4 > 0 Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Do x1 < x2 < 1

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

8 tháng 10 2017

NV
11 tháng 9 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)

\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)