Giải hệ phương trình
\(\hept{\begin{cases}xy-2x-y+2=0\\x^2-5xy+y^2=15\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
c. \(\hept{\begin{cases}xy-\frac{x}{y}=9,6\left(1\right)\\xy-\frac{y}{x}=7,5\left(2\right)\end{cases}}\)
Lấy (1)-(2) ta có \(\frac{y}{x}-\frac{x}{y}=\frac{21}{10}\)\(\Rightarrow\)\(\frac{y^2-x^2}{xy}=\frac{21}{10}\Rightarrow10y^2-21xy-10x^2=0\Rightarrow\left(5y+2x\right)\left(2y-5x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5y+2x=0\\2y-5x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{2}y\\x=\frac{2}{5}y\end{cases}}}\)
Với \(x=-\frac{5}{2}y\Rightarrow\left(-\frac{5}{2}y\right)y-\frac{-\frac{5}{2}y}{y}=9,6\Rightarrow-\frac{5}{2}y^2=\frac{71}{10}\Rightarrow y^2=-\frac{71}{25}\left(l\right)\)
Với \(x=\frac{2}{5}y\Rightarrow\frac{2}{5}y.y-\frac{\frac{2}{5}y}{y}=9,6\Rightarrow\frac{2}{5}y^2=10\Rightarrow y^2=25\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)
Vậy \(\left(x,y\right)=\left(2,5\right);\left(-2,-5\right)\)
\(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\\x^2+y^2+x+y-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}y^2-\left(x+1\right)y-2x^2+5x-2=0\\x^2+y^2+x+y-4=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(y+x-2\right)\left(y-2x+1\right)=0\\x^2+y^2+x+y-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+x-2=0\\x^2+y^2+x+y-4=0\end{cases}}\)hoặc \(\hept{\begin{cases}y-2x+1=0\\x^2+y^2+x+y-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{-4}{5}\\y=\frac{-13}{5}\end{cases}}\)và \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy hpt có 2 nghiệm (x;y)=\(\left(1;1\right);\left(\frac{-4}{5};\frac{-13}{5}\right)\)
\(\hept{\begin{cases}y^2-xy+1=0\left(1\right)\\x^2+2x+y^2+2y+1\left(2\right)\end{cases}}\)từ (1) \(\Rightarrow y^2=xy+1\)thế vào 2 có : \(x^2+2x+xy-1+2y+1=0\)
\(\Rightarrow x^2+xy+2x+2y=0\)\(\Rightarrow x\left(x+y\right)+2\left(x+y\right)=0\)\(\Rightarrow\left(x+2\right)\left(x+y\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-y\end{cases}}\)
Ta xét hệ \(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\left(1\right)\\x^2+y^2+x+y-4=0\left(2\right)\end{cases}}\)
Ta có: \(\left(1\right)\Leftrightarrow y^2-\left(x+1\right)y-2x^2+5x-2=0\)
\(\Leftrightarrow\left[y-\frac{x+1}{2}\right]^2-\left[\frac{\left(x+1\right)^2}{4}+2x^2-5x+2\right]=0\)
\(\Leftrightarrow\left[y-\frac{x+1}{2}\right]^2-\frac{9x^2-18x+9}{4}=0\)\(\Leftrightarrow\left[y-\frac{x+1}{2}\right]^2-\left(\frac{3x-3}{2}\right)^2=0\)
\(\Leftrightarrow\left(y-\frac{x+1}{2}-\frac{3x-3}{2}\right)\left(y-\frac{x+1}{2}+\frac{3x-3}{2}\right)=0\)\(\Leftrightarrow\left(y-2x+1\right)\left(y+x-2\right)=0\Leftrightarrow\orbr{\begin{cases}y-2x+1=0\\y+x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=2x-1\\y=2-x\end{cases}}\)
TH1: \(y=2x-1\), thay vào phương trình (2), ta được: \(x^2+\left(2x-1\right)^2+x+2x-1-4=0\)
\(\Leftrightarrow5x^2-x-4=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=-\frac{4}{5}\Rightarrow y=\frac{-13}{5}\end{cases}}\)
TH2: \(y=2-x\), thay vào phương trình (2), ta được: \(x^2+\left(2-x\right)^2+x+2-x-4=0\)
\(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow2\left(x-1\right)^2=0\Leftrightarrow x=1\Rightarrow y=1\)
Vậy hệ có 2 nghiệm \(\left(x;y\right)\in\left\{\left(1;1\right);\left(-\frac{4}{5};-\frac{13}{5}\right)\right\}\)
\(+,2x^2+xy-y^2-5x+y+2=0\)
\(\Leftrightarrow x^2+\frac{xy}{2}-\frac{y^2}{2}-\frac{5x}{2}+\frac{y}{2}+1=0\)
\(\Leftrightarrow x^2+x\left(\frac{y}{2}-\frac{5}{2}\right)-\frac{y^2}{2}+\frac{y}{2}+1=0\)
\(\Leftrightarrow x^2+2x.\frac{y-5}{4}+\left(\frac{y-5}{4}\right)^2-\left(\frac{y-5}{4}\right)^2-\frac{y^2}{2}+\frac{y}{2}+1=0\)
\(\Leftrightarrow\left(x+\frac{y-5}{4}\right)^2-\frac{y^2-10y+25}{16}-\frac{y^2}{2}+\frac{y}{2}+1=0\)
\(\Leftrightarrow\left(x+\frac{y-5}{4}\right)^2-\frac{9y^2-18y+9}{16}=0\)
\(\Leftrightarrow\left(x+\frac{y-5}{4}\right)^2-\left(\frac{3y-3}{4}\right)^2=0\)
\(\Leftrightarrow\left(x+\frac{y-5}{4}-\frac{3y-3}{4}\right)\left(x+\frac{y-5}{4}+\frac{3y-3}{4}\right)=0\)
\(\Leftrightarrow\left(x+\frac{-y-1}{2}\right)\left(x+y+2\right)=0\)
\(\orbr{\begin{cases}x=\frac{y+1}{2}\\x=-y-2\end{cases}}\)
vậy ....
\(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\\x^2+y^2+x+y-4=0\end{cases}}\)
\(\Leftrightarrow2x^2+xy-y^2-5x+y+2=x^2+y^2+x+y-4\)
\(\Leftrightarrow x^2+xy-y^2-5x+y+2=y^2+x+y-4\)
\(\Leftrightarrow x^2+xy-y^2-5x+y=y^2+x+y-4-2\)
\(\Leftrightarrow x^2+xy-y^2-5x+y=y^2+x+y-6\)
\(\Leftrightarrow x^2+xy-y^2+y=y^2+x+y-6+5x\)
\(\Leftrightarrow x^2+xy-y^2+y=y^2+6x+y-6\)
\(\Leftrightarrow x^2+xy-y^2=y^2+6x-6\)
\(\Leftrightarrow x^2+xy=y^2+6x-6+y^2\)
\(\Leftrightarrow x^2+xy=2y^2+6x-6\)
\(\Leftrightarrow x\left(x+y\right)=2\left(y^2+3x-3\right)\)
a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)
b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)
\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)
e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn