cho
d1: y=2x+4-m
d2: y=3x+m-2
a ) tìm m để d1 cắt d2 tại 1 điểm năm trên trục tung
b) tìm m để d1 cắt d2 tại 1 điểm năm trên trục
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PTHDGD:mx-m+2=\left(m-3\right)x+m\\ \text{Thay }x=0\Leftrightarrow2-m=m\Leftrightarrow m=1\)
a: Để (d1)//(d2) thì m+2=3m-2
\(\Leftrightarrow-2m=-4\)
hay m=2
\(\left(d_1\right):y=\left(2m+5\right)x-3m+2\)
\(\left(d_2\right):y=-2x+m+16\)
Lập phương trình hoành độ giao điểm:
\(\left(2m+5\right)x-3m+2=-2x+m+16\)
\(\Leftrightarrow\left(2m+5\right)x-3m+2+2x-m-16=0\)
\(\Leftrightarrow\left(2m+5+2\right)x-4m-14=0\)
\(\Leftrightarrow\left(2m+7\right)x=4m+14\)
\(\Leftrightarrow x=\dfrac{4m+14}{2m+7}=\dfrac{2\left(2m+7\right)}{2m+7}=2\)
\(\Rightarrow y=\left(2m+5\right).2-3m+2\)
Cắt 1 điểm trên trục hoành khi:
\(\left(2m+5\right).2-3m+2=0\)
\(\Leftrightarrow4m+10-3m+2=0\)
\(\Leftrightarrow m+12=0\)
\(\Leftrightarrow m=-12\)
Vậy: m = -12 thì (d1) cắt (d2) tại một điểm trên trục hoành
Để hai đường thing d1 và d2 song song với nhau
=>\(\left\{{}\begin{matrix}a=a^,\\b\ne b^,\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6=-2\\m\ne3\end{matrix}\right.\)
\(\Leftrightarrow m=\mp2\) t/m
Vậy với m ,,, thì d1 // d2
Theo bài ra ta có ddường thing d cắt trục ting tại điểm có tung độ bằng 2 , gọi giao điểm của d1 và Oy là A
=> \(A_{\left(0,2\right)}\)
=> A \(\in\) \(\left(d1\right)y=\left(m^2-6\right)x+m\)
=> Thay x = 0 và y = 2 vào phương trình đường thẳng d1 ta được :
m= 2
Vậy ,,,,
d1 cắt d2 khi a≠a', b=b' ĐK: 4-m≠0⇒m≠4 m-2≠0⇒m≠2
⇔2x≠3x và 4-m = m-2 ⇒ -2m = -6 ⇒ m = 3 (thoả mãn đk)
tính đến đây thì bn thử cho x=1=>y sau đó vẽ trục toạ độ sẽ thấy d1 ko cắt d2 trên trục tung