tìm hai số tự nhiên x,y thỏa mãn \(x^2y^2-2\left(x+y\right)\)là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y\left(x+1\right)^2=-x^2+2018x-1\)
\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)
\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)
Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau
\(\Rightarrow2020⋮\left(x+1\right)^2\)
Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)
b.
Từ pt đầu:
\(x^2+xy-2y^2+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)
Thế xuống dưới ...
2,Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
x=1; y=3