K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

a,x=-6;-2;0;4                                                                                                                                                                                      b,-2;0;2;4                                                                                                                                                                                             c,-12;-6;-4;2                                                                                                                                                                                    d,-7;3;5;15                                                                                                                                                                                      

1 tháng 3 2020

Câu 1:

a) \(\left(x^2+y^2-36\right)^2-4x^2y^2\)

\(=\left(x^2+y^2-36\right)^2-\left(2xy\right)^2\)

\(=\left(x^2+y^2+2xy-36\right)\left(x^2+y^2-2xy-36\right)\)

\(=\left[\left(x+y\right)^2-36\right]\left[\left(x-y\right)^2-36\right]\)

\(=\left(x+y+6\right)\left(x+y-6\right)\left(x-y+6\right)\left(x-y-6\right)\)

b) \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)

\(=\left(x^2+x-3\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x-3\right)\left(x-2\right)\left(x+1\right)\)

1 tháng 3 2020

1) a) (x2 + y2 - 36)2 - 4x2y2 

= (x2 + y2 - 36 - 2xy)(x2 + y2 - 36 + 2xy)

= [(x - y)2 - 36][(x + y)2 - 36]

= (x - y - 6)(x - y  + 6)(x + y + 6)(x + y - 6)

b) (x2 + x)2 - 5(x2 + x) + 6

= (x2 + x)2 - 2(x2 + x) - 3(x2 + x) + 6

= (x2  + x)(x2 + x - 2) - 3(x2 + x - 2)

= (x2 + x - 3)(x2 + 2x - x - 2)

=  (x2 + x - 3)(x - 1)(x + 2)

2) Đặt tính là đc

c) Ta có: \(P=x^3+y^3+6xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)

\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)

\(=2^3=8\)

22 tháng 1 2020

a) \(x^2+x+1=x\left(x+1\right)+1\)

Vì \(x\inℤ\)\(\Rightarrow x\left(x+1\right)⋮x+1\)\(\Rightarrow\)Để \(x^2+x+1⋮x+1\)thì \(1⋮x+1\)

\(\Rightarrow x+1\inƯ\left(1\right)=\left\{-1;1\right\}\)\(\Rightarrow x\in\left\{-2;0\right\}\)

Vậy \(x\in\left\{-2;0\right\}\)

b) \(3x-8=3x-12+4=3\left(x-4\right)+4\)

Vì \(3\left(x-4\right)⋮x-4\)\(\Rightarrow\)Để \(3x-8⋮x-4\)thì \(4⋮x-4\)

\(\Rightarrow x-4\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Lập bảng giá trị ta có: 

\(x-4\)\(-4\)\(-2\)\(-1\)\(1\)\(2\)\(4\)
\(x\)\(0\)\(2\)\(3\)\(5\)\(6\)\(8\)

Vậy \(x\in\left\{0;2;3;5;6;8\right\}\)

7 tháng 11 2019

Áp dụng định lý Bezout: f(x) chia hết cho ax + b \(\Leftrightarrow f\left(\frac{-b}{a}\right)=0\)

Đặt \(g\left(x\right)=4x^4+2x^3+3x^2-4x+5+m\)

Để đa thức \(g\left(x\right)=4x^4+2x^3+3x^2-4x+5+m\)chia hết cho nhị thức 2x + 3 thì :

\(g\left(\frac{-3}{2}\right)=4.\left(\frac{-3}{2}\right)^4+2.\left(\frac{-3}{2}\right)^3+3.\left(\frac{-3}{2}\right)^2-4.\frac{-3}{2}+5+m=0\)

\(\Leftrightarrow\frac{81}{4}-\frac{27}{4}+\frac{27}{4}+6+5+m=0\)

\(\Leftrightarrow\frac{81}{4}-11+m=0\)

\(\Leftrightarrow\frac{37}{4}+m=0\)

\(\Leftrightarrow m=\frac{-37}{4}\)

Vậy \(m=\frac{-37}{4}\)thì \(4x^4+2x^3+3x^2-4x+5+m\)chia hết cho 2x + 3

18 tháng 2 2022

\(2\left(x-3\right)+5⋮x-3\Rightarrow x-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

x-31-15-5
x428-2(ktm)

 

18 tháng 2 2022

\(=x\in\left\{2;4;8\right\}\)

 

18 tháng 2 2022

\(2x-1⋮x-3\)

\(=>2.\left(x-3\right)+5⋮x-3\)

Do \(2.\left(x-3\right)⋮x-3\)

\(=>5⋮x-3\)

\(=>x-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(=>x\in\left\{-2;2;4;8\right\}\)

18 tháng 2 2022

TL :

Ô bỏ các số âm đi nhé

Vì đây là nguyên dương

HT

18 tháng 2 2022

ta có: \(2x-1=2\left(x-3\right)+5\)

để \(2x-1⋮x-3\Rightarrow2\left(x-3\right)+5⋮x-3\\ m\text{à }x.nguy\text{ê}n\Rightarrow x-3nguy\text{ê}n\\ \Rightarrow x-3\in\text{Ư}\left(5\right)=\left\{-5;5;1;-1\right\}\)

ta có bảng sau :

x-3-55-11
x-2248

 

 

18 tháng 2 2022

\(\Leftrightarrow2.\left(x-3\right)+5⋮x-3\)

\(do2.\left(x-3\right)⋮x-3\)

\(\Leftrightarrow5⋮x-3\)

\(\Leftrightarrow x-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(\Leftrightarrow x\in\left\{-2;2;4;8\right\}\)