Rút gọn biểu thức:
N= 3 - 32 + 33 -34+......+31999- 32000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$T=3-3^2+3^3-3^4+....-3^{2000}$
$3T=3^2-3^3+3^4-3^5+...-3^{2001}$
$\Rightarrow T+3T=3-3^{2001}$
$\Rightarrow 4T=3-3^{2001}$
$\Rightarrow T=\frac{3-3^{2001}}{4}$
a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012
2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013
3M=2^0+2^2013
M=(2^0+2^2013)÷3
Vậy.......
b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012
3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013
4N=3-3^2013
N=(3-3^2013)÷4
Vậy........
K tao nhé ko lên lớp tao đánh m😈😈😈
\(\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}-1\right)\\ ...\\ 2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\\ 2A=3^{128}-1\)
Vậy \(A=\dfrac{3^{128}-1}{2}.\)
A = 1 + 3 + 32 + 33 + ... + 3100
3A = 3 + 32 + 33 +34+ .... + 3101
3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)
2A = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100
2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)
2A = 3101 - 1
A = \(\dfrac{3^{101}-1}{2}\)
a) \(N=\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{x\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right).\left(\sqrt{x}+1\right)=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{x}{\sqrt{x}+1}\right).\left(\sqrt{x}+1\right)=\dfrac{-x+\sqrt{x}-1}{\sqrt{x}+1}\left(\sqrt{x}+1\right)=-x+\sqrt{x}-1\)
b) \(N=-x+\sqrt{x}-1=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\)
\(maxN=-\dfrac{3}{4}\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)
A = 1 + 3 + 32 + 33 +.... +3100
3A = 3(1 + 3 + 32 + 33 +....+3100)
3A = 3 + 32 + 33 + 34 +....+3101
3A - A = 2A = (3 + 32 + 33 + 34 +.... + 3101) - (1 + 3 + 32 + .... + 3100)
2A = ( 3 - 3 ) + ( 32 - 32) +.....+ (3100 - 3100) + (3101 - 1)
2A = 0 + 0 +....+ 0 + 3101 - 1
2A = 3101 - 1
A = (3101 - 1) : 2
N = 3 - 32 - 33 - 34 - ...... - 31999 - 32000
3N = 32 - 33 - 34 - ...... - 31999 - 32000 - 32001
3N - N = (32 - 33 - 34 - ...... - 31999 - 32000 - 32001) - (3 - 32 - 33 - 34 - ...... - 31999 - 32000)
2N = 32 - 33 - 34 - ...... - 31999 - 32000 - 32001 - 3 + 32 + 33 + 34 + ..... + 31999 + 32000
2N = 32 + 32 - 3 - 32001
2N = 15 - 32001
N = \(\frac{15-3^{2001}}{2}\)